ultpixgen / train /train_c_lora.py
roubaofeipi's picture
Upload 100 files
5231633 verified
import torch
import torchvision
from torch import nn, optim
from transformers import AutoTokenizer, CLIPTextModelWithProjection, CLIPVisionModelWithProjection
from warmup_scheduler import GradualWarmupScheduler
import sys
import os
import re
from dataclasses import dataclass
from gdf import GDF, EpsilonTarget, CosineSchedule
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight
from torchtools.transforms import SmartCrop
from modules.effnet import EfficientNetEncoder
from modules.stage_c import StageC
from modules.stage_c import ResBlock, AttnBlock, TimestepBlock, FeedForwardBlock
from modules.previewer import Previewer
from modules.lora import apply_lora, apply_retoken, LoRA, ReToken
from train.base import DataCore, TrainingCore
from core import WarpCore
from core.utils import EXPECTED, EXPECTED_TRAIN, load_or_fail
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, ShardingStrategy
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
import functools
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
from contextlib import contextmanager
class WurstCore(TrainingCore, DataCore, WarpCore):
@dataclass(frozen=True)
class Config(TrainingCore.Config, DataCore.Config, WarpCore.Config):
# TRAINING PARAMS
lr: float = EXPECTED_TRAIN
warmup_updates: int = EXPECTED_TRAIN
dtype: str = None
# MODEL VERSION
model_version: str = EXPECTED # 3.6B or 1B
clip_image_model_name: str = 'openai/clip-vit-large-patch14'
clip_text_model_name: str = 'laion/CLIP-ViT-bigG-14-laion2B-39B-b160k'
# CHECKPOINT PATHS
effnet_checkpoint_path: str = EXPECTED
previewer_checkpoint_path: str = EXPECTED
generator_checkpoint_path: str = None
lora_checkpoint_path: str = None
# LoRA STUFF
module_filters: list = EXPECTED
rank: int = EXPECTED
train_tokens: list = EXPECTED
# gdf customization
adaptive_loss_weight: str = None
@dataclass(frozen=True)
class Models(TrainingCore.Models, DataCore.Models, WarpCore.Models):
effnet: nn.Module = EXPECTED
previewer: nn.Module = EXPECTED
lora: nn.Module = EXPECTED
@dataclass(frozen=True)
class Schedulers(WarpCore.Schedulers):
lora: any = None
@dataclass(frozen=True)
class Extras(TrainingCore.Extras, DataCore.Extras, WarpCore.Extras):
gdf: GDF = EXPECTED
sampling_configs: dict = EXPECTED
effnet_preprocess: torchvision.transforms.Compose = EXPECTED
@dataclass() # not frozen, means that fields are mutable. Doesn't support EXPECTED
class Info(TrainingCore.Info):
train_tokens: list = None
@dataclass(frozen=True)
class Optimizers(TrainingCore.Optimizers, WarpCore.Optimizers):
generator: any = None
lora: any = EXPECTED
# --------------------------------------------
info: Info
config: Config
# Extras: gdf, transforms and preprocessors --------------------------------
def setup_extras_pre(self) -> Extras:
gdf = GDF(
schedule=CosineSchedule(clamp_range=[0.0001, 0.9999]),
input_scaler=VPScaler(), target=EpsilonTarget(),
noise_cond=CosineTNoiseCond(),
loss_weight=AdaptiveLossWeight() if self.config.adaptive_loss_weight is True else P2LossWeight(),
)
sampling_configs = {"cfg": 5, "sampler": DDPMSampler(gdf), "shift": 1, "timesteps": 20}
if self.info.adaptive_loss is not None:
gdf.loss_weight.bucket_ranges = torch.tensor(self.info.adaptive_loss['bucket_ranges'])
gdf.loss_weight.bucket_losses = torch.tensor(self.info.adaptive_loss['bucket_losses'])
effnet_preprocess = torchvision.transforms.Compose([
torchvision.transforms.Normalize(
mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)
)
])
clip_preprocess = torchvision.transforms.Compose([
torchvision.transforms.Resize(224, interpolation=torchvision.transforms.InterpolationMode.BICUBIC),
torchvision.transforms.CenterCrop(224),
torchvision.transforms.Normalize(
mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)
)
])
if self.config.training:
transforms = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Resize(self.config.image_size, interpolation=torchvision.transforms.InterpolationMode.BILINEAR, antialias=True),
SmartCrop(self.config.image_size, randomize_p=0.3, randomize_q=0.2)
])
else:
transforms = None
return self.Extras(
gdf=gdf,
sampling_configs=sampling_configs,
transforms=transforms,
effnet_preprocess=effnet_preprocess,
clip_preprocess=clip_preprocess
)
# Data --------------------------------
def get_conditions(self, batch: dict, models: Models, extras: Extras, is_eval=False, is_unconditional=False,
eval_image_embeds=False, return_fields=None):
conditions = super().get_conditions(
batch, models, extras, is_eval, is_unconditional,
eval_image_embeds, return_fields=return_fields or ['clip_text', 'clip_text_pooled', 'clip_img']
)
return conditions
# Models, Optimizers & Schedulers setup --------------------------------
def setup_models(self, extras: Extras) -> Models:
dtype = getattr(torch, self.config.dtype) if self.config.dtype else torch.float32
# EfficientNet encoder
effnet = EfficientNetEncoder().to(self.device)
effnet_checkpoint = load_or_fail(self.config.effnet_checkpoint_path)
effnet.load_state_dict(effnet_checkpoint if 'state_dict' not in effnet_checkpoint else effnet_checkpoint['state_dict'])
effnet.eval().requires_grad_(False)
del effnet_checkpoint
# Previewer
previewer = Previewer().to(self.device)
previewer_checkpoint = load_or_fail(self.config.previewer_checkpoint_path)
previewer.load_state_dict(previewer_checkpoint if 'state_dict' not in previewer_checkpoint else previewer_checkpoint['state_dict'])
previewer.eval().requires_grad_(False)
del previewer_checkpoint
@contextmanager
def dummy_context():
yield None
loading_context = dummy_context if self.config.training else init_empty_weights
with loading_context():
# Diffusion models
if self.config.model_version == '3.6B':
generator = StageC()
elif self.config.model_version == '1B':
generator = StageC(c_cond=1536, c_hidden=[1536, 1536], nhead=[24, 24], blocks=[[4, 12], [12, 4]])
else:
raise ValueError(f"Unknown model version {self.config.model_version}")
if self.config.generator_checkpoint_path is not None:
if loading_context is dummy_context:
generator.load_state_dict(load_or_fail(self.config.generator_checkpoint_path))
else:
for param_name, param in load_or_fail(self.config.generator_checkpoint_path).items():
set_module_tensor_to_device(generator, param_name, "cpu", value=param)
generator = generator.to(dtype).to(self.device)
generator = self.load_model(generator, 'generator')
# if self.config.use_fsdp:
# fsdp_auto_wrap_policy = functools.partial(size_based_auto_wrap_policy, min_num_params=3000)
# generator = FSDP(generator, **self.fsdp_defaults, auto_wrap_policy=fsdp_auto_wrap_policy, device_id=self.device)
# CLIP encoders
tokenizer = AutoTokenizer.from_pretrained(self.config.clip_text_model_name)
text_model = CLIPTextModelWithProjection.from_pretrained(self.config.clip_text_model_name).requires_grad_(False).to(dtype).to(self.device)
image_model = CLIPVisionModelWithProjection.from_pretrained(self.config.clip_image_model_name).requires_grad_(False).to(dtype).to(self.device)
# PREPARE LORA
update_tokens = []
for tkn_regex, aggr_regex in self.config.train_tokens:
if (tkn_regex.startswith('[') and tkn_regex.endswith(']')) or (tkn_regex.startswith('<') and tkn_regex.endswith('>')):
# Insert new token
tokenizer.add_tokens([tkn_regex])
# add new zeros embedding
new_embedding = torch.zeros_like(text_model.text_model.embeddings.token_embedding.weight.data)[:1]
if aggr_regex is not None: # aggregate embeddings to provide an interesting baseline
aggr_tokens = [v for k, v in tokenizer.vocab.items() if re.search(aggr_regex, k) is not None]
if len(aggr_tokens) > 0:
new_embedding = text_model.text_model.embeddings.token_embedding.weight.data[aggr_tokens].mean(dim=0, keepdim=True)
elif self.is_main_node:
print(f"WARNING: No tokens found for aggregation regex {aggr_regex}. It will be initialized as zeros.")
text_model.text_model.embeddings.token_embedding.weight.data = torch.cat([
text_model.text_model.embeddings.token_embedding.weight.data, new_embedding
], dim=0)
selected_tokens = [len(tokenizer.vocab) - 1]
else:
selected_tokens = [v for k, v in tokenizer.vocab.items() if re.search(tkn_regex, k) is not None]
update_tokens += selected_tokens
update_tokens = list(set(update_tokens)) # remove duplicates
apply_retoken(text_model.text_model.embeddings.token_embedding, update_tokens)
apply_lora(generator, filters=self.config.module_filters, rank=self.config.rank)
text_model.text_model.to(self.device)
generator.to(self.device)
lora = nn.ModuleDict()
lora['embeddings'] = text_model.text_model.embeddings.token_embedding.parametrizations.weight[0]
lora['weights'] = nn.ModuleList()
for module in generator.modules():
if isinstance(module, LoRA) or (hasattr(module, '_fsdp_wrapped_module') and isinstance(module._fsdp_wrapped_module, LoRA)):
lora['weights'].append(module)
self.info.train_tokens = [(i, tokenizer.decode(i)) for i in update_tokens]
if self.is_main_node:
print("Updating tokens:", self.info.train_tokens)
print(f"LoRA training {len(lora['weights'])} layers")
if self.config.lora_checkpoint_path is not None:
lora_checkpoint = load_or_fail(self.config.lora_checkpoint_path)
lora.load_state_dict(lora_checkpoint if 'state_dict' not in lora_checkpoint else lora_checkpoint['state_dict'])
lora = self.load_model(lora, 'lora')
lora.to(self.device).train().requires_grad_(True)
if self.config.use_fsdp:
# fsdp_auto_wrap_policy = functools.partial(size_based_auto_wrap_policy, min_num_params=3000)
fsdp_auto_wrap_policy = ModuleWrapPolicy([LoRA, ReToken])
lora = FSDP(lora, **self.fsdp_defaults, auto_wrap_policy=fsdp_auto_wrap_policy, device_id=self.device)
return self.Models(
effnet=effnet, previewer=previewer,
generator=generator, generator_ema=None,
lora=lora,
tokenizer=tokenizer, text_model=text_model, image_model=image_model
)
def setup_optimizers(self, extras: Extras, models: Models) -> Optimizers:
optimizer = optim.AdamW(models.lora.parameters(), lr=self.config.lr) # , eps=1e-7, betas=(0.9, 0.95))
optimizer = self.load_optimizer(optimizer, 'lora_optim',
fsdp_model=models.lora if self.config.use_fsdp else None)
return self.Optimizers(generator=None, lora=optimizer)
def setup_schedulers(self, extras: Extras, models: Models, optimizers: Optimizers) -> Schedulers:
scheduler = GradualWarmupScheduler(optimizers.lora, multiplier=1, total_epoch=self.config.warmup_updates)
scheduler.last_epoch = self.info.total_steps
return self.Schedulers(lora=scheduler)
def forward_pass(self, data: WarpCore.Data, extras: Extras, models: Models):
batch = next(data.iterator)
conditions = self.get_conditions(batch, models, extras)
with torch.no_grad():
latents = self.encode_latents(batch, models, extras)
noised, noise, target, logSNR, noise_cond, loss_weight = extras.gdf.diffuse(latents, shift=1, loss_shift=1)
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
pred = models.generator(noised, noise_cond, **conditions)
loss = nn.functional.mse_loss(pred, target, reduction='none').mean(dim=[1, 2, 3])
loss_adjusted = (loss * loss_weight).mean() / self.config.grad_accum_steps
if isinstance(extras.gdf.loss_weight, AdaptiveLossWeight):
extras.gdf.loss_weight.update_buckets(logSNR, loss)
return loss, loss_adjusted
def backward_pass(self, update, loss, loss_adjusted, models: Models, optimizers: TrainingCore.Optimizers, schedulers: Schedulers):
if update:
loss_adjusted.backward()
grad_norm = nn.utils.clip_grad_norm_(models.lora.parameters(), 1.0)
optimizers_dict = optimizers.to_dict()
for k in optimizers_dict:
if optimizers_dict[k] is not None and k != 'training':
optimizers_dict[k].step()
schedulers_dict = schedulers.to_dict()
for k in schedulers_dict:
if k != 'training':
schedulers_dict[k].step()
for k in optimizers_dict:
if optimizers_dict[k] is not None and k != 'training':
optimizers_dict[k].zero_grad(set_to_none=True)
self.info.total_steps += 1
else:
loss_adjusted.backward()
grad_norm = torch.tensor(0.0).to(self.device)
return grad_norm
def models_to_save(self):
return ['lora']
def sample(self, models: Models, data: WarpCore.Data, extras: Extras):
models.lora.eval()
super().sample(models, data, extras)
models.lora.train(), models.generator.eval()
def encode_latents(self, batch: dict, models: Models, extras: Extras) -> torch.Tensor:
images = batch['images'].to(self.device)
return models.effnet(extras.effnet_preprocess(images))
def decode_latents(self, latents: torch.Tensor, batch: dict, models: Models, extras: Extras) -> torch.Tensor:
return models.previewer(latents)
if __name__ == '__main__':
print("Launching Script")
warpcore = WurstCore(
config_file_path=sys.argv[1] if len(sys.argv) > 1 else None,
device=torch.device(int(os.environ.get("SLURM_LOCALID")))
)
warpcore.fsdp_defaults['sharding_strategy'] = ShardingStrategy.NO_SHARD
# RUN TRAINING
warpcore()