|
import torch |
|
import json |
|
import yaml |
|
import torchvision |
|
from torch import nn, optim |
|
from transformers import AutoTokenizer, CLIPTextModelWithProjection, CLIPVisionModelWithProjection |
|
from warmup_scheduler import GradualWarmupScheduler |
|
import torch.multiprocessing as mp |
|
import numpy as np |
|
import os |
|
import sys |
|
sys.path.append(os.path.abspath('./')) |
|
from dataclasses import dataclass |
|
from torch.distributed import init_process_group, destroy_process_group, barrier |
|
from gdf import GDF_dual_fixlrt as GDF |
|
from gdf import EpsilonTarget, CosineSchedule |
|
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight |
|
from torchtools.transforms import SmartCrop |
|
from fractions import Fraction |
|
from modules.effnet import EfficientNetEncoder |
|
|
|
from modules.model_4stage_lite import StageC, ResBlock, AttnBlock, TimestepBlock, FeedForwardBlock |
|
from modules.previewer import Previewer |
|
from core.data import Bucketeer |
|
from train.base import DataCore, TrainingCore |
|
from tqdm import tqdm |
|
from core import WarpCore |
|
from core.utils import EXPECTED, EXPECTED_TRAIN, load_or_fail |
|
|
|
from accelerate import init_empty_weights |
|
from accelerate.utils import set_module_tensor_to_device |
|
from contextlib import contextmanager |
|
from train.dist_core import * |
|
import glob |
|
from torch.utils.data import DataLoader, Dataset |
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
from torch.utils.data.distributed import DistributedSampler |
|
from PIL import Image |
|
from core.utils import EXPECTED, EXPECTED_TRAIN, update_weights_ema, create_folder_if_necessary |
|
from core.utils import Base |
|
from modules.common_ckpt import LayerNorm2d, GlobalResponseNorm |
|
import torch.nn.functional as F |
|
import functools |
|
import math |
|
import copy |
|
import random |
|
from modules.lora import apply_lora, apply_retoken, LoRA, ReToken |
|
Image.MAX_IMAGE_PIXELS = None |
|
torch.manual_seed(23) |
|
random.seed(23) |
|
np.random.seed(23) |
|
|
|
|
|
class Null_Model(torch.nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
def forward(self, x): |
|
pass |
|
|
|
|
|
|
|
|
|
def identity(x): |
|
if isinstance(x, bytes): |
|
x = x.decode('utf-8') |
|
return x |
|
def check_nan_inmodel(model, meta=''): |
|
for name, param in model.named_parameters(): |
|
if torch.isnan(param).any(): |
|
print(f"nan detected in {name}", meta) |
|
return True |
|
print('no nan', meta) |
|
return False |
|
class mydist_dataset(Dataset): |
|
def __init__(self, rootpath, img_processor=None): |
|
|
|
self.img_pathlist = glob.glob(os.path.join(rootpath, '*', '*.jpg')) |
|
self.img_processor = img_processor |
|
self.length = len( self.img_pathlist) |
|
|
|
|
|
|
|
def __getitem__(self, idx): |
|
|
|
imgpath = self.img_pathlist[idx] |
|
json_file = imgpath.replace('.jpg', '.json') |
|
|
|
with open(json_file, 'r') as file: |
|
info = json.load(file) |
|
txt = info['caption'] |
|
if txt is None: |
|
txt = ' ' |
|
try: |
|
img = Image.open(imgpath).convert('RGB') |
|
w, h = img.size |
|
if self.img_processor is not None: |
|
img = self.img_processor(img) |
|
|
|
except: |
|
print('exception', imgpath) |
|
return self.__getitem__(random.randint(0, self.length -1 ) ) |
|
return dict(captions=txt, images=img) |
|
def __len__(self): |
|
return self.length |
|
|
|
class WurstCore(TrainingCore, DataCore, WarpCore): |
|
@dataclass(frozen=True) |
|
class Config(TrainingCore.Config, DataCore.Config, WarpCore.Config): |
|
|
|
lr: float = EXPECTED_TRAIN |
|
warmup_updates: int = EXPECTED_TRAIN |
|
dtype: str = None |
|
|
|
|
|
model_version: str = EXPECTED |
|
clip_image_model_name: str = 'openai/clip-vit-large-patch14' |
|
clip_text_model_name: str = 'laion/CLIP-ViT-bigG-14-laion2B-39B-b160k' |
|
|
|
|
|
effnet_checkpoint_path: str = EXPECTED |
|
previewer_checkpoint_path: str = EXPECTED |
|
|
|
generator_checkpoint_path: str = None |
|
|
|
|
|
adaptive_loss_weight: str = None |
|
use_ddp: bool=EXPECTED |
|
|
|
|
|
@dataclass(frozen=True) |
|
class Data(Base): |
|
dataset: Dataset = EXPECTED |
|
dataloader: DataLoader = EXPECTED |
|
iterator: any = EXPECTED |
|
sampler: DistributedSampler = EXPECTED |
|
|
|
@dataclass(frozen=True) |
|
class Models(TrainingCore.Models, DataCore.Models, WarpCore.Models): |
|
effnet: nn.Module = EXPECTED |
|
previewer: nn.Module = EXPECTED |
|
train_norm: nn.Module = EXPECTED |
|
|
|
|
|
@dataclass(frozen=True) |
|
class Schedulers(WarpCore.Schedulers): |
|
generator: any = None |
|
|
|
@dataclass(frozen=True) |
|
class Extras(TrainingCore.Extras, DataCore.Extras, WarpCore.Extras): |
|
gdf: GDF = EXPECTED |
|
sampling_configs: dict = EXPECTED |
|
effnet_preprocess: torchvision.transforms.Compose = EXPECTED |
|
|
|
info: TrainingCore.Info |
|
config: Config |
|
|
|
def setup_extras_pre(self) -> Extras: |
|
gdf = GDF( |
|
schedule=CosineSchedule(clamp_range=[0.0001, 0.9999]), |
|
input_scaler=VPScaler(), target=EpsilonTarget(), |
|
noise_cond=CosineTNoiseCond(), |
|
loss_weight=AdaptiveLossWeight() if self.config.adaptive_loss_weight is True else P2LossWeight(), |
|
) |
|
sampling_configs = {"cfg": 5, "sampler": DDPMSampler(gdf), "shift": 1, "timesteps": 20} |
|
|
|
if self.info.adaptive_loss is not None: |
|
gdf.loss_weight.bucket_ranges = torch.tensor(self.info.adaptive_loss['bucket_ranges']) |
|
gdf.loss_weight.bucket_losses = torch.tensor(self.info.adaptive_loss['bucket_losses']) |
|
|
|
effnet_preprocess = torchvision.transforms.Compose([ |
|
torchvision.transforms.Normalize( |
|
mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225) |
|
) |
|
]) |
|
|
|
clip_preprocess = torchvision.transforms.Compose([ |
|
torchvision.transforms.Resize(224, interpolation=torchvision.transforms.InterpolationMode.BICUBIC), |
|
torchvision.transforms.CenterCrop(224), |
|
torchvision.transforms.Normalize( |
|
mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711) |
|
) |
|
]) |
|
|
|
if self.config.training: |
|
transforms = torchvision.transforms.Compose([ |
|
torchvision.transforms.ToTensor(), |
|
torchvision.transforms.Resize(self.config.image_size[-1], interpolation=torchvision.transforms.InterpolationMode.BILINEAR, antialias=True), |
|
SmartCrop(self.config.image_size, randomize_p=0.3, randomize_q=0.2) |
|
]) |
|
else: |
|
transforms = None |
|
|
|
return self.Extras( |
|
gdf=gdf, |
|
sampling_configs=sampling_configs, |
|
transforms=transforms, |
|
effnet_preprocess=effnet_preprocess, |
|
clip_preprocess=clip_preprocess |
|
) |
|
|
|
def get_conditions(self, batch: dict, models: Models, extras: Extras, is_eval=False, is_unconditional=False, |
|
eval_image_embeds=False, return_fields=None): |
|
conditions = super().get_conditions( |
|
batch, models, extras, is_eval, is_unconditional, |
|
eval_image_embeds, return_fields=return_fields or ['clip_text', 'clip_text_pooled', 'clip_img'] |
|
) |
|
return conditions |
|
|
|
def setup_models(self, extras: Extras) -> Models: |
|
|
|
dtype = getattr(torch, self.config.dtype) if self.config.dtype else torch.bfloat16 |
|
|
|
|
|
effnet = EfficientNetEncoder() |
|
effnet_checkpoint = load_or_fail(self.config.effnet_checkpoint_path) |
|
effnet.load_state_dict(effnet_checkpoint if 'state_dict' not in effnet_checkpoint else effnet_checkpoint['state_dict']) |
|
effnet.eval().requires_grad_(False).to(self.device) |
|
del effnet_checkpoint |
|
|
|
|
|
previewer = Previewer() |
|
previewer_checkpoint = load_or_fail(self.config.previewer_checkpoint_path) |
|
previewer.load_state_dict(previewer_checkpoint if 'state_dict' not in previewer_checkpoint else previewer_checkpoint['state_dict']) |
|
previewer.eval().requires_grad_(False).to(self.device) |
|
del previewer_checkpoint |
|
|
|
@contextmanager |
|
def dummy_context(): |
|
yield None |
|
|
|
loading_context = dummy_context if self.config.training else init_empty_weights |
|
|
|
|
|
with loading_context(): |
|
generator_ema = None |
|
if self.config.model_version == '3.6B': |
|
generator = StageC() |
|
if self.config.ema_start_iters is not None: |
|
generator_ema = StageC() |
|
elif self.config.model_version == '1B': |
|
print('in line 155 1b light model', self.config.model_version ) |
|
generator = StageC(c_cond=1536, c_hidden=[1536, 1536], nhead=[24, 24], blocks=[[4, 12], [12, 4]]) |
|
|
|
if self.config.ema_start_iters is not None and self.config.training: |
|
generator_ema = StageC(c_cond=1536, c_hidden=[1536, 1536], nhead=[24, 24], blocks=[[4, 12], [12, 4]]) |
|
else: |
|
raise ValueError(f"Unknown model version {self.config.model_version}") |
|
|
|
|
|
|
|
if loading_context is dummy_context: |
|
generator.load_state_dict( load_or_fail(self.config.generator_checkpoint_path)) |
|
else: |
|
for param_name, param in load_or_fail(self.config.generator_checkpoint_path).items(): |
|
set_module_tensor_to_device(generator, param_name, "cpu", value=param) |
|
|
|
generator._init_extra_parameter() |
|
generator = generator.to(torch.bfloat16).to(self.device) |
|
|
|
|
|
train_norm = nn.ModuleList() |
|
cnt_norm = 0 |
|
for mm in generator.modules(): |
|
if isinstance(mm, GlobalResponseNorm): |
|
|
|
train_norm.append(Null_Model()) |
|
cnt_norm += 1 |
|
|
|
train_norm.append(generator.agg_net) |
|
train_norm.append(generator.agg_net_up) |
|
total = sum([ param.nelement() for param in train_norm.parameters()]) |
|
print('Trainable parameter', total / 1048576) |
|
|
|
if os.path.exists(os.path.join(self.config.output_path, self.config.experiment_id, 'train_norm.safetensors')): |
|
sdd = torch.load(os.path.join(self.config.output_path, self.config.experiment_id, 'train_norm.safetensors'), map_location='cpu') |
|
collect_sd = {} |
|
for k, v in sdd.items(): |
|
collect_sd[k[7:]] = v |
|
train_norm.load_state_dict(collect_sd, strict=True) |
|
|
|
|
|
train_norm.to(self.device).train().requires_grad_(True) |
|
|
|
if generator_ema is not None: |
|
|
|
generator_ema.load_state_dict(load_or_fail(self.config.generator_checkpoint_path)) |
|
generator_ema._init_extra_parameter() |
|
|
|
|
|
pretrained_pth = os.path.join(self.config.output_path, self.config.experiment_id, 'generator.safetensors') |
|
if os.path.exists(pretrained_pth): |
|
print(pretrained_pth, 'exists') |
|
generator_ema.load_state_dict(torch.load(pretrained_pth, map_location='cpu')) |
|
|
|
|
|
generator_ema.eval().requires_grad_(False) |
|
|
|
|
|
|
|
|
|
check_nan_inmodel(generator, 'generator') |
|
|
|
|
|
|
|
if self.config.use_ddp and self.config.training: |
|
|
|
train_norm = DDP(train_norm, device_ids=[self.device], find_unused_parameters=True) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(self.config.clip_text_model_name) |
|
text_model = CLIPTextModelWithProjection.from_pretrained( self.config.clip_text_model_name).requires_grad_(False).to(dtype).to(self.device) |
|
image_model = CLIPVisionModelWithProjection.from_pretrained(self.config.clip_image_model_name).requires_grad_(False).to(dtype).to(self.device) |
|
|
|
return self.Models( |
|
effnet=effnet, previewer=previewer, train_norm = train_norm, |
|
generator=generator, tokenizer=tokenizer, text_model=text_model, image_model=image_model, |
|
) |
|
|
|
def setup_optimizers(self, extras: Extras, models: Models) -> TrainingCore.Optimizers: |
|
|
|
|
|
params = [] |
|
params += list(models.train_norm.module.parameters()) |
|
|
|
optimizer = optim.AdamW(params, lr=self.config.lr) |
|
|
|
return self.Optimizers(generator=optimizer) |
|
|
|
def ema_update(self, ema_model, source_model, beta): |
|
for param_src, param_ema in zip(source_model.parameters(), ema_model.parameters()): |
|
param_ema.data.mul_(beta).add_(param_src.data, alpha = 1 - beta) |
|
|
|
def sync_ema(self, ema_model): |
|
for param in ema_model.parameters(): |
|
torch.distributed.all_reduce(param.data, op=torch.distributed.ReduceOp.SUM) |
|
param.data /= torch.distributed.get_world_size() |
|
def setup_optimizers_backup(self, extras: Extras, models: Models) -> TrainingCore.Optimizers: |
|
|
|
|
|
optimizer = optim.AdamW( |
|
models.generator.up_blocks.parameters() , |
|
lr=self.config.lr) |
|
optimizer = self.load_optimizer(optimizer, 'generator_optim', |
|
fsdp_model=models.generator if self.config.use_fsdp else None) |
|
return self.Optimizers(generator=optimizer) |
|
|
|
def setup_schedulers(self, extras: Extras, models: Models, optimizers: TrainingCore.Optimizers) -> Schedulers: |
|
scheduler = GradualWarmupScheduler(optimizers.generator, multiplier=1, total_epoch=self.config.warmup_updates) |
|
scheduler.last_epoch = self.info.total_steps |
|
return self.Schedulers(generator=scheduler) |
|
|
|
def setup_data(self, extras: Extras) -> WarpCore.Data: |
|
|
|
dataset_path = self.config.webdataset_path |
|
dataset = mydist_dataset(dataset_path, \ |
|
torchvision.transforms.ToTensor() if self.config.multi_aspect_ratio is not None \ |
|
else extras.transforms) |
|
|
|
|
|
real_batch_size = self.config.batch_size // (self.world_size * self.config.grad_accum_steps) |
|
|
|
sampler = DistributedSampler(dataset, rank=self.process_id, num_replicas = self.world_size, shuffle=True) |
|
dataloader = DataLoader( |
|
dataset, batch_size=real_batch_size, num_workers=8, pin_memory=True, |
|
collate_fn=identity if self.config.multi_aspect_ratio is not None else None, |
|
sampler = sampler |
|
) |
|
if self.is_main_node: |
|
print(f"Training with batch size {self.config.batch_size} ({real_batch_size}/GPU)") |
|
|
|
if self.config.multi_aspect_ratio is not None: |
|
aspect_ratios = [float(Fraction(f)) for f in self.config.multi_aspect_ratio] |
|
dataloader_iterator = Bucketeer(dataloader, density=[ss*ss for ss in self.config.image_size] , factor=32, |
|
ratios=aspect_ratios, p_random_ratio=self.config.bucketeer_random_ratio, |
|
interpolate_nearest=False) |
|
else: |
|
|
|
dataloader_iterator = iter(dataloader) |
|
|
|
return self.Data(dataset=dataset, dataloader=dataloader, iterator=dataloader_iterator, sampler=sampler) |
|
|
|
|
|
def models_to_save(self): |
|
pass |
|
def setup_ddp(self, experiment_id, single_gpu=False, rank=0): |
|
|
|
if not single_gpu: |
|
local_rank = rank |
|
process_id = rank |
|
world_size = get_world_size() |
|
|
|
self.process_id = process_id |
|
self.is_main_node = process_id == 0 |
|
self.device = torch.device(local_rank) |
|
self.world_size = world_size |
|
|
|
os.environ['MASTER_ADDR'] = 'localhost' |
|
os.environ['MASTER_PORT'] = '41443' |
|
torch.cuda.set_device(local_rank) |
|
init_process_group( |
|
backend="nccl", |
|
rank=local_rank, |
|
world_size=world_size, |
|
) |
|
print(f"[GPU {process_id}] READY") |
|
else: |
|
self.is_main_node = rank == 0 |
|
self.process_id = rank |
|
self.device = torch.device('cuda:0') |
|
self.world_size = 1 |
|
print("Running in single thread, DDP not enabled.") |
|
|
|
def get_target_lr_size(self, ratio, std_size=24): |
|
w, h = int(std_size / math.sqrt(ratio)), int(std_size * math.sqrt(ratio)) |
|
return (h * 32 , w * 32) |
|
def forward_pass(self, data: WarpCore.Data, extras: Extras, models: Models): |
|
|
|
batch = data |
|
ratio = batch['images'].shape[-2] / batch['images'].shape[-1] |
|
shape_lr = self.get_target_lr_size(ratio) |
|
|
|
with torch.no_grad(): |
|
conditions = self.get_conditions(batch, models, extras) |
|
|
|
latents = self.encode_latents(batch, models, extras) |
|
latents_lr = self.encode_latents(batch, models, extras,target_size=shape_lr) |
|
|
|
noised, noise, target, logSNR, noise_cond, loss_weight = extras.gdf.diffuse(latents, shift=1, loss_shift=1) |
|
noised_lr, noise_lr, target_lr, logSNR_lr, noise_cond_lr, loss_weight_lr = extras.gdf.diffuse(latents_lr, shift=1, loss_shift=1, t=torch.ones(latents.shape[0]).to(latents.device)*0.05, ) |
|
|
|
with torch.cuda.amp.autocast(dtype=torch.bfloat16): |
|
|
|
require_cond = True |
|
|
|
with torch.no_grad(): |
|
_, lr_enc_guide, lr_dec_guide = models.generator(noised_lr, noise_cond_lr, reuire_f=True, **conditions) |
|
|
|
|
|
pred = models.generator(noised, noise_cond, reuire_f=False, lr_guide=(lr_enc_guide, lr_dec_guide) if require_cond else None , **conditions) |
|
loss = nn.functional.mse_loss(pred, target, reduction='none').mean(dim=[1, 2, 3]) |
|
|
|
loss_adjusted = (loss * loss_weight ).mean() / self.config.grad_accum_steps |
|
|
|
|
|
if isinstance(extras.gdf.loss_weight, AdaptiveLossWeight): |
|
extras.gdf.loss_weight.update_buckets(logSNR, loss) |
|
|
|
return loss, loss_adjusted |
|
|
|
def backward_pass(self, update, loss_adjusted, models: Models, optimizers: TrainingCore.Optimizers, schedulers: Schedulers): |
|
|
|
|
|
if update: |
|
|
|
torch.distributed.barrier() |
|
loss_adjusted.backward() |
|
|
|
grad_norm = nn.utils.clip_grad_norm_(models.train_norm.module.parameters(), 1.0) |
|
|
|
optimizers_dict = optimizers.to_dict() |
|
for k in optimizers_dict: |
|
if k != 'training': |
|
optimizers_dict[k].step() |
|
schedulers_dict = schedulers.to_dict() |
|
for k in schedulers_dict: |
|
if k != 'training': |
|
schedulers_dict[k].step() |
|
for k in optimizers_dict: |
|
if k != 'training': |
|
optimizers_dict[k].zero_grad(set_to_none=True) |
|
self.info.total_steps += 1 |
|
else: |
|
|
|
loss_adjusted.backward() |
|
|
|
grad_norm = torch.tensor(0.0).to(self.device) |
|
|
|
return grad_norm |
|
|
|
|
|
def encode_latents(self, batch: dict, models: Models, extras: Extras, target_size=None) -> torch.Tensor: |
|
|
|
images = batch['images'].to(self.device) |
|
if target_size is not None: |
|
images = F.interpolate(images, target_size) |
|
|
|
return models.effnet(extras.effnet_preprocess(images)) |
|
|
|
def decode_latents(self, latents: torch.Tensor, batch: dict, models: Models, extras: Extras) -> torch.Tensor: |
|
return models.previewer(latents) |
|
|
|
def __init__(self, rank=0, config_file_path=None, config_dict=None, device="cpu", training=True, world_size=1, ): |
|
|
|
self.is_main_node = (rank == 0) |
|
self.config: self.Config = self.setup_config(config_file_path, config_dict, training) |
|
self.setup_ddp(self.config.experiment_id, single_gpu=world_size <= 1, rank=rank) |
|
self.info: self.Info = self.setup_info() |
|
|
|
|
|
|
|
def __call__(self, single_gpu=False): |
|
|
|
if self.config.allow_tf32: |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
|
|
if self.is_main_node: |
|
print() |
|
print("**STARTIG JOB WITH CONFIG:**") |
|
print(yaml.dump(self.config.to_dict(), default_flow_style=False)) |
|
print("------------------------------------") |
|
print() |
|
print("**INFO:**") |
|
print(yaml.dump(vars(self.info), default_flow_style=False)) |
|
print("------------------------------------") |
|
print() |
|
|
|
|
|
extras = self.setup_extras_pre() |
|
assert extras is not None, "setup_extras_pre() must return a DTO" |
|
|
|
|
|
|
|
data = self.setup_data(extras) |
|
assert data is not None, "setup_data() must return a DTO" |
|
if self.is_main_node: |
|
print("**DATA:**") |
|
print(yaml.dump({k:type(v).__name__ for k, v in data.to_dict().items()}, default_flow_style=False)) |
|
print("------------------------------------") |
|
print() |
|
|
|
models = self.setup_models(extras) |
|
assert models is not None, "setup_models() must return a DTO" |
|
if self.is_main_node: |
|
print("**MODELS:**") |
|
print(yaml.dump({ |
|
k:f"{type(v).__name__} - {f'trainable params {sum(p.numel() for p in v.parameters() if p.requires_grad)}' if isinstance(v, nn.Module) else 'Not a nn.Module'}" for k, v in models.to_dict().items() |
|
}, default_flow_style=False)) |
|
print("------------------------------------") |
|
print() |
|
|
|
|
|
|
|
optimizers = self.setup_optimizers(extras, models) |
|
assert optimizers is not None, "setup_optimizers() must return a DTO" |
|
if self.is_main_node: |
|
print("**OPTIMIZERS:**") |
|
print(yaml.dump({k:type(v).__name__ for k, v in optimizers.to_dict().items()}, default_flow_style=False)) |
|
print("------------------------------------") |
|
print() |
|
|
|
schedulers = self.setup_schedulers(extras, models, optimizers) |
|
assert schedulers is not None, "setup_schedulers() must return a DTO" |
|
if self.is_main_node: |
|
print("**SCHEDULERS:**") |
|
print(yaml.dump({k:type(v).__name__ for k, v in schedulers.to_dict().items()}, default_flow_style=False)) |
|
print("------------------------------------") |
|
print() |
|
|
|
post_extras =self.setup_extras_post(extras, models, optimizers, schedulers) |
|
assert post_extras is not None, "setup_extras_post() must return a DTO" |
|
extras = self.Extras.from_dict({ **extras.to_dict(),**post_extras.to_dict() }) |
|
if self.is_main_node: |
|
print("**EXTRAS:**") |
|
print(yaml.dump({k:f"{v}" for k, v in extras.to_dict().items()}, default_flow_style=False)) |
|
print("------------------------------------") |
|
print() |
|
|
|
|
|
|
|
if self.is_main_node: |
|
print("**TRAINING STARTING...**") |
|
self.train(data, extras, models, optimizers, schedulers) |
|
|
|
if single_gpu is False: |
|
barrier() |
|
destroy_process_group() |
|
if self.is_main_node: |
|
print() |
|
print("------------------------------------") |
|
print() |
|
print("**TRAINING COMPLETE**") |
|
|
|
|
|
|
|
def train(self, data: WarpCore.Data, extras: WarpCore.Extras, models: Models, optimizers: TrainingCore.Optimizers, |
|
schedulers: WarpCore.Schedulers): |
|
start_iter = self.info.iter + 1 |
|
max_iters = self.config.updates * self.config.grad_accum_steps |
|
if self.is_main_node: |
|
print(f"STARTING AT STEP: {start_iter}/{max_iters}") |
|
|
|
|
|
if self.is_main_node: |
|
create_folder_if_necessary(f'{self.config.output_path}/{self.config.experiment_id}/') |
|
|
|
models.generator.train() |
|
|
|
iter_cnt = 0 |
|
epoch_cnt = 0 |
|
models.train_norm.train() |
|
while True: |
|
epoch_cnt += 1 |
|
if self.world_size > 1: |
|
|
|
data.sampler.set_epoch(epoch_cnt) |
|
for ggg in range(len(data.dataloader)): |
|
iter_cnt += 1 |
|
loss, loss_adjusted = self.forward_pass(next(data.iterator), extras, models) |
|
grad_norm = self.backward_pass( |
|
iter_cnt % self.config.grad_accum_steps == 0 or iter_cnt == max_iters, loss_adjusted, |
|
models, optimizers, schedulers |
|
) |
|
|
|
self.info.iter = iter_cnt |
|
|
|
|
|
|
|
self.info.ema_loss = loss.mean().item() if self.info.ema_loss is None else self.info.ema_loss * 0.99 + loss.mean().item() * 0.01 |
|
|
|
|
|
if self.is_main_node and np.isnan(loss.mean().item()) or np.isnan(grad_norm.item()): |
|
print(f" NaN value encountered in training run {self.info.wandb_run_id}", \ |
|
f"Loss {loss.mean().item()} - Grad Norm {grad_norm.item()}. Run {self.info.wandb_run_id}") |
|
|
|
if self.is_main_node: |
|
logs = { |
|
'loss': self.info.ema_loss, |
|
'backward_loss': loss_adjusted.mean().item(), |
|
'ema_loss': self.info.ema_loss, |
|
'raw_ori_loss': loss.mean().item(), |
|
'grad_norm': grad_norm.item(), |
|
'lr': optimizers.generator.param_groups[0]['lr'] if optimizers.generator is not None else 0, |
|
'total_steps': self.info.total_steps, |
|
} |
|
if iter_cnt % (self.config.save_every) == 0: |
|
|
|
print(iter_cnt, max_iters, logs, epoch_cnt, ) |
|
|
|
|
|
|
|
if iter_cnt == 1 or iter_cnt % (self.config.save_every ) == 0 or iter_cnt == max_iters: |
|
|
|
|
|
if np.isnan(loss.mean().item()): |
|
if self.is_main_node and self.config.wandb_project is not None: |
|
print(f"NaN value encountered in training run {self.info.wandb_run_id}", \ |
|
f"Loss {loss.mean().item()} - Grad Norm {grad_norm.item()}. Run {self.info.wandb_run_id}") |
|
|
|
else: |
|
if isinstance(extras.gdf.loss_weight, AdaptiveLossWeight): |
|
self.info.adaptive_loss = { |
|
'bucket_ranges': extras.gdf.loss_weight.bucket_ranges.tolist(), |
|
'bucket_losses': extras.gdf.loss_weight.bucket_losses.tolist(), |
|
} |
|
|
|
|
|
|
|
if self.is_main_node and iter_cnt % (self.config.save_every * self.config.grad_accum_steps) == 0: |
|
print('save model', iter_cnt, iter_cnt % (self.config.save_every * self.config.grad_accum_steps), self.config.save_every, self.config.grad_accum_steps ) |
|
torch.save(models.train_norm.state_dict(), \ |
|
f'{self.config.output_path}/{self.config.experiment_id}/train_norm.safetensors') |
|
|
|
torch.save(models.train_norm.state_dict(), \ |
|
f'{self.config.output_path}/{self.config.experiment_id}/train_norm_{iter_cnt}.safetensors') |
|
|
|
|
|
if iter_cnt == 1 or iter_cnt % (self.config.save_every* self.config.grad_accum_steps) == 0 or iter_cnt == max_iters: |
|
|
|
if self.is_main_node: |
|
|
|
self.sample(models, data, extras) |
|
|
|
|
|
if self.info.iter >= max_iters: |
|
break |
|
|
|
def sample(self, models: Models, data: WarpCore.Data, extras: Extras): |
|
|
|
|
|
models.generator.eval() |
|
models.train_norm.eval() |
|
with torch.no_grad(): |
|
batch = next(data.iterator) |
|
ratio = batch['images'].shape[-2] / batch['images'].shape[-1] |
|
|
|
shape_lr = self.get_target_lr_size(ratio) |
|
conditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=False) |
|
unconditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False) |
|
|
|
latents = self.encode_latents(batch, models, extras) |
|
latents_lr = self.encode_latents(batch, models, extras, target_size = shape_lr) |
|
|
|
|
|
if self.is_main_node: |
|
|
|
with torch.cuda.amp.autocast(dtype=torch.bfloat16): |
|
|
|
*_, (sampled, _, _, sampled_lr) = extras.gdf.sample( |
|
models.generator, conditions, |
|
latents.shape, latents_lr.shape, |
|
unconditions, device=self.device, **extras.sampling_configs |
|
) |
|
|
|
|
|
|
|
|
|
if self.is_main_node: |
|
print('sampling results hr latent shape', latents.shape, 'lr latent shape', latents_lr.shape, ) |
|
noised_images = torch.cat( |
|
[self.decode_latents(latents[i:i + 1].float(), batch, models, extras) for i in range(len(latents))], dim=0) |
|
|
|
sampled_images = torch.cat( |
|
[self.decode_latents(sampled[i:i + 1].float(), batch, models, extras) for i in range(len(sampled))], dim=0) |
|
|
|
|
|
noised_images_lr = torch.cat( |
|
[self.decode_latents(latents_lr[i:i + 1].float(), batch, models, extras) for i in range(len(latents_lr))], dim=0) |
|
|
|
sampled_images_lr = torch.cat( |
|
[self.decode_latents(sampled_lr[i:i + 1].float(), batch, models, extras) for i in range(len(sampled_lr))], dim=0) |
|
|
|
images = batch['images'] |
|
if images.size(-1) != noised_images.size(-1) or images.size(-2) != noised_images.size(-2): |
|
images = nn.functional.interpolate(images, size=noised_images.shape[-2:], mode='bicubic') |
|
images_lr = nn.functional.interpolate(images, size=noised_images_lr.shape[-2:], mode='bicubic') |
|
|
|
collage_img = torch.cat([ |
|
torch.cat([i for i in images.cpu()], dim=-1), |
|
torch.cat([i for i in noised_images.cpu()], dim=-1), |
|
torch.cat([i for i in sampled_images.cpu()], dim=-1), |
|
], dim=-2) |
|
|
|
collage_img_lr = torch.cat([ |
|
torch.cat([i for i in images_lr.cpu()], dim=-1), |
|
torch.cat([i for i in noised_images_lr.cpu()], dim=-1), |
|
torch.cat([i for i in sampled_images_lr.cpu()], dim=-1), |
|
], dim=-2) |
|
|
|
torchvision.utils.save_image(collage_img, f'{self.config.output_path}/{self.config.experiment_id}/{self.info.total_steps:06d}.jpg') |
|
torchvision.utils.save_image(collage_img_lr, f'{self.config.output_path}/{self.config.experiment_id}/{self.info.total_steps:06d}_lr.jpg') |
|
|
|
|
|
models.generator.train() |
|
models.train_norm.train() |
|
print('finish sampling') |
|
|
|
|
|
|
|
def sample_fortest(self, models: Models, extras: Extras, hr_shape, lr_shape, batch, eval_image_embeds=False): |
|
|
|
|
|
models.generator.eval() |
|
|
|
with torch.no_grad(): |
|
|
|
if self.is_main_node: |
|
conditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=eval_image_embeds) |
|
unconditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False) |
|
|
|
with torch.cuda.amp.autocast(dtype=torch.bfloat16): |
|
|
|
*_, (sampled, _, _, sampled_lr) = extras.gdf.sample( |
|
models.generator, conditions, |
|
hr_shape, lr_shape, |
|
unconditions, device=self.device, **extras.sampling_configs |
|
) |
|
|
|
if models.generator_ema is not None: |
|
|
|
*_, (sampled_ema, _, _, sampled_ema_lr) = extras.gdf.sample( |
|
models.generator_ema, conditions, |
|
latents.shape, latents_lr.shape, |
|
unconditions, device=self.device, **extras.sampling_configs |
|
) |
|
|
|
else: |
|
sampled_ema = sampled |
|
sampled_ema_lr = sampled_lr |
|
|
|
return sampled, sampled_lr |
|
def main_worker(rank, cfg): |
|
print("Launching Script in main worker") |
|
|
|
warpcore = WurstCore( |
|
config_file_path=cfg, rank=rank, world_size = get_world_size() |
|
) |
|
|
|
|
|
|
|
warpcore(get_world_size()==1) |
|
|
|
if __name__ == '__main__': |
|
print('launch multi process') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if get_master_ip() == "127.0.0.1": |
|
|
|
mp.spawn(main_worker, nprocs=get_world_size(), args=(sys.argv[1] if len(sys.argv) > 1 else None, )) |
|
else: |
|
main_worker(0, sys.argv[1] if len(sys.argv) > 1 else None, ) |
|
|