Update app.py
Browse files
app.py
CHANGED
@@ -15,39 +15,59 @@ import spaces
|
|
15 |
from huggingface_hub import hf_hub_url
|
16 |
import subprocess
|
17 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def parse_args():
|
20 |
parser = argparse.ArgumentParser()
|
21 |
-
parser.add_argument(
|
22 |
parser.add_argument('--width', type=int, default=5120, help='image width')
|
23 |
parser.add_argument('--seed', type=int, default=123, help='random seed')
|
24 |
-
parser.add_argument('--dtype', type=str, default='bf16', help='
|
25 |
parser.add_argument('--config_c', type=str,
|
26 |
-
default='configs/training/t2i.yaml'
|
27 |
parser.add_argument('--config_b', type=str,
|
28 |
-
default='configs/inference/stage_b_1b.yaml'
|
29 |
-
parser.add_argument(
|
30 |
default='A photo-realistic image of a west highland white terrier in the garden, high quality, detail rich, 8K', help='text prompt')
|
31 |
-
parser.add_argument(
|
32 |
-
parser.add_argument(
|
33 |
-
parser.add_argument(
|
34 |
-
parser.add_argument(
|
35 |
args = parser.parse_args()
|
36 |
return args
|
37 |
|
38 |
def clear_image():
|
39 |
return None
|
|
|
40 |
def load_message(height, width, seed, prompt, args, stage_a_tiled):
|
41 |
args.height = height
|
42 |
args.width = width
|
43 |
-
args.seed
|
44 |
args.prompt = prompt + ' rich detail, 4k, high quality'
|
45 |
args.stage_a_tiled = stage_a_tiled
|
46 |
return args
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
@spaces.GPU(duration=120)
|
48 |
def get_image(height, width, seed, prompt, cfg, timesteps, stage_a_tiled):
|
49 |
global args
|
50 |
-
|
|
|
|
|
|
|
|
|
51 |
torch.manual_seed(args.seed)
|
52 |
random.seed(args.seed)
|
53 |
np.random.seed(args.seed)
|
@@ -55,7 +75,7 @@ def get_image(height, width, seed, prompt, cfg, timesteps, stage_a_tiled):
|
|
55 |
|
56 |
captions = [args.prompt] * args.num_image
|
57 |
height, width = args.height, args.width
|
58 |
-
batch_size=1
|
59 |
height_lr, width_lr = get_target_lr_size(height / width, std_size=32)
|
60 |
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
|
61 |
stage_c_latent_shape_lr, stage_b_latent_shape_lr = calculate_latent_sizes(height_lr, width_lr, batch_size=batch_size)
|
@@ -67,8 +87,6 @@ def get_image(height, width, seed, prompt, cfg, timesteps, stage_a_tiled):
|
|
67 |
extras.sampling_configs['t_start'] = 1.0
|
68 |
extras.sampling_configs['sampler'] = DDPMSampler(extras.gdf)
|
69 |
|
70 |
-
|
71 |
-
|
72 |
# Stage B Parameters
|
73 |
extras_b.sampling_configs['cfg'] = 1.1
|
74 |
extras_b.sampling_configs['shift'] = 1
|
@@ -76,61 +94,52 @@ def get_image(height, width, seed, prompt, cfg, timesteps, stage_a_tiled):
|
|
76 |
extras_b.sampling_configs['t_start'] = 1.0
|
77 |
|
78 |
for _, caption in enumerate(captions):
|
79 |
-
|
|
|
|
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
|
86 |
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
|
|
|
|
|
|
|
87 |
|
|
|
|
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
models.generator.cuda()
|
93 |
-
print('STAGE C GENERATION***************************')
|
94 |
-
with torch.cuda.amp.autocast(dtype=dtype):
|
95 |
-
sampled_c = generation_c(batch, models, extras, core, stage_c_latent_shape, stage_c_latent_shape_lr, device)
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
models.generator.cpu()
|
100 |
-
torch.cuda.empty_cache()
|
101 |
-
|
102 |
-
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
|
103 |
-
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
|
104 |
-
conditions_b['effnet'] = sampled_c
|
105 |
-
unconditions_b['effnet'] = torch.zeros_like(sampled_c)
|
106 |
-
print('STAGE B + A DECODING***************************')
|
107 |
-
|
108 |
-
with torch.cuda.amp.autocast(dtype=dtype):
|
109 |
-
sampled = decode_b(conditions_b, unconditions_b, models_b, stage_b_latent_shape, extras_b, device, stage_a_tiled=args.stage_a_tiled)
|
110 |
-
|
111 |
-
torch.cuda.empty_cache()
|
112 |
-
imgs = show_images(sampled)
|
113 |
-
#for idx, img in enumerate(imgs):
|
114 |
-
#print(os.path.join(save_dir, args.prompt[:20]+'_' + str(cnt).zfill(5) + '.jpg'), idx)
|
115 |
-
#img.save(os.path.join(save_dir, args.prompt[:20]+'_' + str(cnt).zfill(5) + '.jpg'))
|
116 |
|
117 |
return imgs[0]
|
118 |
-
#print('finished! Results ')
|
119 |
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
-
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
122 |
with gr.Column(elem_id="col-container"):
|
123 |
gr.Markdown("<h1><center>UltraPixel</center></h1>")
|
124 |
|
125 |
with gr.Row():
|
126 |
prompt = gr.Textbox(
|
127 |
-
label="Text Prompt",
|
128 |
show_label=False,
|
129 |
max_lines=1,
|
130 |
-
placeholder="Enter your prompt",
|
131 |
container=False
|
132 |
)
|
133 |
-
polish_button = gr.Button("Submit!", scale=0)
|
134 |
|
135 |
output_img = gr.Image(label="Output Image", show_label=False)
|
136 |
|
@@ -140,11 +149,8 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
140 |
value=123,
|
141 |
step=1,
|
142 |
minimum=0,
|
143 |
-
#maximum=MAX_SEED
|
144 |
)
|
145 |
|
146 |
-
#randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
|
147 |
-
|
148 |
with gr.Row():
|
149 |
width = gr.Slider(
|
150 |
label="Width",
|
@@ -186,14 +192,14 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
186 |
gr.Examples(
|
187 |
examples=[
|
188 |
"A detailed view of a blooming magnolia tree, with large, white flowers and dark green leaves, set against a clear blue sky.",
|
189 |
-
"
|
190 |
"The image features a snow-covered mountain range with a large, snow-covered mountain in the background. The mountain is surrounded by a forest of trees, and the sky is filled with clouds. The scene is set during the winter season, with snow covering the ground and the trees.",
|
191 |
-
"
|
192 |
"A vibrant anime scene of a young girl with long, flowing pink hair, big sparkling blue eyes, and a school uniform, standing under a cherry blossom tree with petals falling around her. The background shows a traditional Japanese school with cherry blossoms in full bloom.",
|
193 |
-
"
|
194 |
"A cozy, rustic log cabin nestled in a snow-covered forest, with smoke rising from the stone chimney, warm lights glowing from the windows, and a path of footprints leading to the front door.",
|
195 |
-
"
|
196 |
-
"
|
197 |
],
|
198 |
inputs=[prompt],
|
199 |
outputs=[output_img],
|
@@ -202,33 +208,27 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
202 |
|
203 |
polish_button.click(get_image, inputs=[height, width, seed, prompt, cfg, timesteps, stage_a_tiled], outputs=output_img)
|
204 |
polish_button.click(clear_image, inputs=[], outputs=output_img)
|
205 |
-
|
206 |
-
|
207 |
|
208 |
def download_with_wget(url, save_path):
|
209 |
-
|
210 |
try:
|
211 |
subprocess.run(['wget', url, '-O', save_path], check=True)
|
212 |
print(f"Downloaded to {save_path}")
|
213 |
except subprocess.CalledProcessError as e:
|
214 |
print(f"Error downloading file: {e}")
|
|
|
215 |
def download_model():
|
216 |
-
|
217 |
urls = [
|
218 |
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_a.safetensors',
|
219 |
'https://huggingface.co/stabilityai/StableWurst/resolve/main/previewer.safetensors',
|
220 |
'https://huggingface.co/stabilityai/StableWurst/resolve/main/effnet_encoder.safetensors',
|
221 |
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_b_lite_bf16.safetensors',
|
222 |
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_c_bf16.safetensors',
|
223 |
-
|
224 |
]
|
225 |
for file_url in urls:
|
226 |
hf_hub_download(repo_id="stabilityai/stable-cascade", filename=file_url.split('/')[-1], local_dir='models')
|
227 |
-
# 'https://huggingface.co/roubaofeipi/UltraPixel/blob/main/ultrapixel_t2i.safetensors'
|
228 |
hf_hub_download(repo_id="roubaofeipi/UltraPixel", filename='ultrapixel_t2i.safetensors', local_dir='models')
|
229 |
|
230 |
if __name__ == "__main__":
|
231 |
-
|
232 |
args = parse_args()
|
233 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
234 |
download_model()
|
@@ -268,7 +268,4 @@ if __name__ == "__main__":
|
|
268 |
models.generator.eval()
|
269 |
models.train_norm.eval()
|
270 |
|
271 |
-
|
272 |
-
demo.launch(
|
273 |
-
debug=True, share=True,
|
274 |
-
)
|
|
|
15 |
from huggingface_hub import hf_hub_url
|
16 |
import subprocess
|
17 |
from huggingface_hub import hf_hub_download
|
18 |
+
from transformers import pipeline
|
19 |
+
|
20 |
+
# Initialize the translation pipeline
|
21 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
|
22 |
|
23 |
def parse_args():
|
24 |
parser = argparse.ArgumentParser()
|
25 |
+
parser.add_argument('--height', type=int, default=2560, help='image height')
|
26 |
parser.add_argument('--width', type=int, default=5120, help='image width')
|
27 |
parser.add_argument('--seed', type=int, default=123, help='random seed')
|
28 |
+
parser.add_argument('--dtype', type=str, default='bf16', help='if bf16 does not work, change it to float32')
|
29 |
parser.add_argument('--config_c', type=str,
|
30 |
+
default='configs/training/t2i.yaml', help='config file for stage c, latent generation')
|
31 |
parser.add_argument('--config_b', type=str,
|
32 |
+
default='configs/inference/stage_b_1b.yaml', help='config file for stage b, latent decoding')
|
33 |
+
parser.add_argument('--prompt', type=str,
|
34 |
default='A photo-realistic image of a west highland white terrier in the garden, high quality, detail rich, 8K', help='text prompt')
|
35 |
+
parser.add_argument('--num_image', type=int, default=1, help='how many images generated')
|
36 |
+
parser.add_argument('--output_dir', type=str, default='figures/output_results/', help='output directory for generated image')
|
37 |
+
parser.add_argument('--stage_a_tiled', action='store_true', help='whether or not to use tiled decoding for stage a to save memory')
|
38 |
+
parser.add_argument('--pretrained_path', type=str, default='models/ultrapixel_t2i.safetensors', help='pretrained path of newly added parameter of UltraPixel')
|
39 |
args = parser.parse_args()
|
40 |
return args
|
41 |
|
42 |
def clear_image():
|
43 |
return None
|
44 |
+
|
45 |
def load_message(height, width, seed, prompt, args, stage_a_tiled):
|
46 |
args.height = height
|
47 |
args.width = width
|
48 |
+
args.seed = seed
|
49 |
args.prompt = prompt + ' rich detail, 4k, high quality'
|
50 |
args.stage_a_tiled = stage_a_tiled
|
51 |
return args
|
52 |
+
|
53 |
+
def is_korean(text):
|
54 |
+
return any('\uac00' <= char <= '\ud7a3' for char in text)
|
55 |
+
|
56 |
+
def translate_if_korean(text):
|
57 |
+
if is_korean(text):
|
58 |
+
translated = translator(text, max_length=512)[0]['translation_text']
|
59 |
+
print(f"Translated from Korean: {text} -> {translated}")
|
60 |
+
return translated
|
61 |
+
return text
|
62 |
+
|
63 |
@spaces.GPU(duration=120)
|
64 |
def get_image(height, width, seed, prompt, cfg, timesteps, stage_a_tiled):
|
65 |
global args
|
66 |
+
|
67 |
+
# Translate the prompt if it's in Korean
|
68 |
+
prompt = translate_if_korean(prompt)
|
69 |
+
|
70 |
+
args = load_message(height, width, seed, prompt, args, stage_a_tiled)
|
71 |
torch.manual_seed(args.seed)
|
72 |
random.seed(args.seed)
|
73 |
np.random.seed(args.seed)
|
|
|
75 |
|
76 |
captions = [args.prompt] * args.num_image
|
77 |
height, width = args.height, args.width
|
78 |
+
batch_size = 1
|
79 |
height_lr, width_lr = get_target_lr_size(height / width, std_size=32)
|
80 |
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
|
81 |
stage_c_latent_shape_lr, stage_b_latent_shape_lr = calculate_latent_sizes(height_lr, width_lr, batch_size=batch_size)
|
|
|
87 |
extras.sampling_configs['t_start'] = 1.0
|
88 |
extras.sampling_configs['sampler'] = DDPMSampler(extras.gdf)
|
89 |
|
|
|
|
|
90 |
# Stage B Parameters
|
91 |
extras_b.sampling_configs['cfg'] = 1.1
|
92 |
extras_b.sampling_configs['shift'] = 1
|
|
|
94 |
extras_b.sampling_configs['t_start'] = 1.0
|
95 |
|
96 |
for _, caption in enumerate(captions):
|
97 |
+
batch = {'captions': [caption] * batch_size}
|
98 |
+
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
|
99 |
+
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
|
100 |
|
101 |
+
with torch.no_grad():
|
102 |
+
models.generator.cuda()
|
103 |
+
print('STAGE C GENERATION***************************')
|
104 |
+
with torch.cuda.amp.autocast(dtype=dtype):
|
105 |
+
sampled_c = generation_c(batch, models, extras, core, stage_c_latent_shape, stage_c_latent_shape_lr, device)
|
106 |
+
|
107 |
+
models.generator.cpu()
|
108 |
+
torch.cuda.empty_cache()
|
109 |
|
110 |
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
|
111 |
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
|
112 |
+
conditions_b['effnet'] = sampled_c
|
113 |
+
unconditions_b['effnet'] = torch.zeros_like(sampled_c)
|
114 |
+
print('STAGE B + A DECODING***************************')
|
115 |
|
116 |
+
with torch.cuda.amp.autocast(dtype=dtype):
|
117 |
+
sampled = decode_b(conditions_b, unconditions_b, models_b, stage_b_latent_shape, extras_b, device, stage_a_tiled=args.stage_a_tiled)
|
118 |
|
119 |
+
torch.cuda.empty_cache()
|
120 |
+
imgs = show_images(sampled)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
return imgs[0]
|
|
|
123 |
|
124 |
+
css = """
|
125 |
+
footer {
|
126 |
+
visibility: hidden;
|
127 |
+
}
|
128 |
+
"""
|
129 |
|
130 |
+
with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
|
131 |
with gr.Column(elem_id="col-container"):
|
132 |
gr.Markdown("<h1><center>UltraPixel</center></h1>")
|
133 |
|
134 |
with gr.Row():
|
135 |
prompt = gr.Textbox(
|
136 |
+
label="Text Prompt (ํ๊ธ ๋๋ ์์ด๋ก ์
๋ ฅํ์ธ์)",
|
137 |
show_label=False,
|
138 |
max_lines=1,
|
139 |
+
placeholder="ํ๋กฌํํธ๋ฅผ ์
๋ ฅํ์ธ์ (Enter your prompt in Korean or English)",
|
140 |
container=False
|
141 |
)
|
142 |
+
polish_button = gr.Button("์ ์ถ! (Submit!)", scale=0)
|
143 |
|
144 |
output_img = gr.Image(label="Output Image", show_label=False)
|
145 |
|
|
|
149 |
value=123,
|
150 |
step=1,
|
151 |
minimum=0,
|
|
|
152 |
)
|
153 |
|
|
|
|
|
154 |
with gr.Row():
|
155 |
width = gr.Slider(
|
156 |
label="Width",
|
|
|
192 |
gr.Examples(
|
193 |
examples=[
|
194 |
"A detailed view of a blooming magnolia tree, with large, white flowers and dark green leaves, set against a clear blue sky.",
|
195 |
+
"๋ ๋ฎ์ธ ์ฐ๋งฅ์ ์ฅ์ํ ์ ๊ฒฝ, ํธ๋ฅธ ํ๋์ ๋ฐฐ๊ฒฝ์ผ๋ก ํ ๊ณ ์ํ ํธ์๊ฐ ์๋ ๋ชจ์ต",
|
196 |
"The image features a snow-covered mountain range with a large, snow-covered mountain in the background. The mountain is surrounded by a forest of trees, and the sky is filled with clouds. The scene is set during the winter season, with snow covering the ground and the trees.",
|
197 |
+
"์ค์จํฐ๋ฅผ ์
์ ์
์ด",
|
198 |
"A vibrant anime scene of a young girl with long, flowing pink hair, big sparkling blue eyes, and a school uniform, standing under a cherry blossom tree with petals falling around her. The background shows a traditional Japanese school with cherry blossoms in full bloom.",
|
199 |
+
"๊ณจ๋ ๋ฆฌํธ๋ฆฌ๋ฒ ๊ฐ์์ง๊ฐ ํธ๋ฅธ ์๋๋ฐญ์์ ๋นจ๊ฐ ๊ณต์ ์ซ๋ ๊ท์ฌ์ด ๋ชจ์ต",
|
200 |
"A cozy, rustic log cabin nestled in a snow-covered forest, with smoke rising from the stone chimney, warm lights glowing from the windows, and a path of footprints leading to the front door.",
|
201 |
+
"์บ๋๋ค ๋ฐดํ ๊ตญ๋ฆฝ๊ณต์์ ์๋ฆ๋ค์ด ํ๊ฒฝ, ์ฒญ๋ก์ ํธ์์ ๋ ๋ฎ์ธ ์ฐ๋ค, ์ธ์ฐฝํ ์๋๋ฌด ์ฒ์ด ์ด์ฐ๋ฌ์ง ๋ชจ์ต",
|
202 |
+
"๊ท์ฌ์ด ์์ธ๊ฐ ์์กฐ์์ ๋ชฉ์ํ๋ ๋ชจ์ต, ๊ฑฐํ์ ๋๋ฌ์ธ์ธ ์ฑ ์ด์ง ์ ์ ๋ชจ์ต์ผ๋ก ์นด๋ฉ๋ผ๋ฅผ ๋ฐ๋ผ๋ณด๊ณ ์์",
|
203 |
],
|
204 |
inputs=[prompt],
|
205 |
outputs=[output_img],
|
|
|
208 |
|
209 |
polish_button.click(get_image, inputs=[height, width, seed, prompt, cfg, timesteps, stage_a_tiled], outputs=output_img)
|
210 |
polish_button.click(clear_image, inputs=[], outputs=output_img)
|
|
|
|
|
211 |
|
212 |
def download_with_wget(url, save_path):
|
|
|
213 |
try:
|
214 |
subprocess.run(['wget', url, '-O', save_path], check=True)
|
215 |
print(f"Downloaded to {save_path}")
|
216 |
except subprocess.CalledProcessError as e:
|
217 |
print(f"Error downloading file: {e}")
|
218 |
+
|
219 |
def download_model():
|
|
|
220 |
urls = [
|
221 |
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_a.safetensors',
|
222 |
'https://huggingface.co/stabilityai/StableWurst/resolve/main/previewer.safetensors',
|
223 |
'https://huggingface.co/stabilityai/StableWurst/resolve/main/effnet_encoder.safetensors',
|
224 |
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_b_lite_bf16.safetensors',
|
225 |
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_c_bf16.safetensors',
|
|
|
226 |
]
|
227 |
for file_url in urls:
|
228 |
hf_hub_download(repo_id="stabilityai/stable-cascade", filename=file_url.split('/')[-1], local_dir='models')
|
|
|
229 |
hf_hub_download(repo_id="roubaofeipi/UltraPixel", filename='ultrapixel_t2i.safetensors', local_dir='models')
|
230 |
|
231 |
if __name__ == "__main__":
|
|
|
232 |
args = parse_args()
|
233 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
234 |
download_model()
|
|
|
268 |
models.generator.eval()
|
269 |
models.train_norm.eval()
|
270 |
|
271 |
+
demo.launch(debug=True, share=True, auth=("gini","pick"))
|
|
|
|
|
|