File size: 4,403 Bytes
2786a41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import numpy as np
import gradio as gr
import requests
import time
import json
import base64
import os
from PIL import Image
from io import BytesIO

class Prodia:
    def __init__(self, api_key, base=None):
        self.base = base or "https://api.prodia.com/v1"
        self.headers = {
            "X-Prodia-Key": api_key
        }

    def generate(self, params):
        response = self._post(f"{self.base}/sdxl/generate", params)
        return response.json()

    def get_job(self, job_id):
        response = self._get(f"{self.base}/job/{job_id}")
        return response.json()

    def wait(self, job):
        job_result = job

        while job_result['status'] not in ['succeeded', 'failed']:
            time.sleep(0.25)
            job_result = self.get_job(job['job'])

        return job_result

    def list_models(self):
        response = self._get(f"{self.base}/sdxl/models")
        return response.json()

    def list_samplers(self):
        response = self._get(f"{self.base}/sdxl/samplers")
        return response.json()

    def _post(self, url, params):
        headers = {
            **self.headers,
            "Content-Type": "application/json"
        }
        response = requests.post(url, headers=headers, data=json.dumps(params))

        if response.status_code != 200:
            raise Exception(f"Bad Prodia Response: {response.status_code}")

        return response

    def _get(self, url):
        response = requests.get(url, headers=self.headers)

        if response.status_code != 200:
            raise Exception(f"Bad Prodia Response: {response.status_code}")

        return response


def image_to_base64(image_path):
    # Open the image with PIL
    with Image.open(image_path) as image:
        # Convert the image to bytes
        buffered = BytesIO()
        image.save(buffered, format="PNG")  # You can change format to PNG if needed

        # Encode the bytes to base64
        img_str = base64.b64encode(buffered.getvalue())

    return img_str.decode('utf-8')  # Convert bytes to string



prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))

def flip_text(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed):
    result = prodia_client.generate({
        "prompt": prompt,
        "negative_prompt": negative_prompt,
        "model": model,
        "steps": steps,
        "sampler": sampler,
        "cfg_scale": cfg_scale,
        "width": width,
        "height": height,
        "seed": seed
    })

    job = prodia_client.wait(result)

    return job["imageUrl"]

css = """
#generate {
    height: 100%;
}
"""

with gr.Blocks(css=css, model="sd_xl_base_1.0.safetensors [be9edd61]", sampler="DPM++ 2M Karras", batch_size=1, batch_count=1) as demo:
    with gr.Row():
        with gr.Column(scale=1):
            gr.HTML(value=""""<h1><center>Fast SDXL on <a href="https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0" target="_blank">stabilityai/stable-diffusion-xl-base-1.0</a>""")
        with gr.Column(scale=6, min_width=600):  
            prompt = gr.Textbox(label="Prompt", placeholder="a cute cat, 8k", show_label=true, lines=1)
            text_button = gr.Button("Generate", variant='primary', elem_id="generate")

        with gr.Row():
            with gr.Accordion("Additionals inputs"):
                with gr.Column(scale=1):
                    negative_prompt = gr.Textbox(label="Negative Prompt", value="text, blurry", placeholder="What you don't want to see in the image", show_label=True, lines=1)
                with gr.Column(scale=1):
                    steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=30, value=25, step=1)
                    cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
                    seed = gr.Number(label="Seed", value=-1)
                with gr.Column(scale=1):
                    width = gr.Slider(label="↔️ Width", minimum=1024, maximum=1024, value=1024, step=8)
                    height = gr.Slider(label="↕️ Height", minimum=1024, maximum=1024, value=1024, step=8)



            with gr.Column(scale=1):
                image_output = gr.Image()

        text_button.click(flip_text, inputs=[prompt, negative_prompt, steps, cfg_scale, width, height, seed], outputs=image_output)

demo.queue(concurrency_count=16, max_size=20, api_open=False).launch(max_threads=64)