Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,6 @@ import queue
|
|
7 |
import torch
|
8 |
import psycopg2
|
9 |
import zlib
|
10 |
-
import numpy as np
|
11 |
from urllib.parse import urlparse
|
12 |
|
13 |
# Настройки базы данных PostgreSQL
|
@@ -76,32 +75,37 @@ def setup_database():
|
|
76 |
return
|
77 |
|
78 |
with conn.cursor() as cur:
|
79 |
-
# Создаем расширение pgvector
|
80 |
cur.execute("CREATE EXTENSION IF NOT EXISTS vector;")
|
81 |
|
|
|
|
|
|
|
82 |
# Создаем таблицу для хранения эмбеддингов фильмов
|
83 |
cur.execute(f"""
|
84 |
-
CREATE TABLE
|
85 |
movie_id INTEGER PRIMARY KEY,
|
86 |
embedding_crc32 BIGINT,
|
87 |
string_crc32 BIGINT,
|
88 |
model_name TEXT,
|
89 |
-
embedding
|
90 |
);
|
91 |
-
CREATE INDEX
|
|
|
92 |
""")
|
93 |
|
94 |
# Создаем таблицу для кэширования запросов
|
95 |
cur.execute(f"""
|
96 |
-
CREATE TABLE
|
97 |
query_crc32 BIGINT PRIMARY KEY,
|
98 |
query TEXT,
|
99 |
model_name TEXT,
|
100 |
-
embedding
|
101 |
created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP
|
102 |
);
|
103 |
-
CREATE INDEX
|
104 |
-
CREATE INDEX
|
|
|
105 |
""")
|
106 |
|
107 |
conn.commit()
|
@@ -138,14 +142,6 @@ def get_movies_without_embeddings():
|
|
138 |
conn.close()
|
139 |
return movies_to_process
|
140 |
|
141 |
-
def vector_to_list(vector):
|
142 |
-
"""Преобразует вектор PyTorch в список float."""
|
143 |
-
return vector.detach().cpu().numpy().tolist()
|
144 |
-
|
145 |
-
def list_to_vector(lst):
|
146 |
-
"""Преобразует список float в вектор PyTorch."""
|
147 |
-
return torch.tensor(lst)
|
148 |
-
|
149 |
def get_embedding_from_db(conn, table_name, crc32_column, crc32_value, model_name):
|
150 |
"""Получает эмбеддинг из базы данных."""
|
151 |
with conn.cursor() as cur:
|
@@ -153,12 +149,11 @@ def get_embedding_from_db(conn, table_name, crc32_column, crc32_value, model_nam
|
|
153 |
(crc32_value, model_name))
|
154 |
result = cur.fetchone()
|
155 |
if result and result[0]:
|
156 |
-
return
|
157 |
return None
|
158 |
|
159 |
def insert_embedding(conn, table_name, movie_id, embedding_crc32, string_crc32, embedding):
|
160 |
"""Вставляет эмбеддинг в базу данных."""
|
161 |
-
embedding_list = vector_to_list(embedding)
|
162 |
with conn.cursor() as cur:
|
163 |
try:
|
164 |
cur.execute(f"""
|
@@ -166,7 +161,7 @@ def insert_embedding(conn, table_name, movie_id, embedding_crc32, string_crc32,
|
|
166 |
(movie_id, embedding_crc32, string_crc32, model_name, embedding)
|
167 |
VALUES (%s, %s, %s, %s, %s)
|
168 |
ON CONFLICT (movie_id) DO NOTHING
|
169 |
-
""", (movie_id, embedding_crc32, string_crc32, model_name,
|
170 |
conn.commit()
|
171 |
return True
|
172 |
except Exception as e:
|
@@ -222,7 +217,7 @@ def process_movies():
|
|
222 |
|
223 |
if existing_embedding is None:
|
224 |
embedding = encode_string(embedding_string)
|
225 |
-
embedding_crc32 = calculate_crc32(str(
|
226 |
|
227 |
if insert_embedding(conn, embeddings_table, movie['id'], embedding_crc32, string_crc32, embedding):
|
228 |
print(f"Сохранен эмбеддинг для '{movie['name']}'")
|
@@ -239,15 +234,12 @@ def get_movie_embeddings(conn):
|
|
239 |
"""Загружает все эмбеддинги фильмов из базы данных."""
|
240 |
movie_embeddings = {}
|
241 |
with conn.cursor() as cur:
|
242 |
-
cur.execute(f""
|
243 |
-
SELECT e.movie_id, e.embedding
|
244 |
-
FROM {embeddings_table} e
|
245 |
-
""")
|
246 |
for movie_id, embedding in cur.fetchall():
|
247 |
# Находим название фильма по ID
|
248 |
for movie in movies_data:
|
249 |
if movie['id'] == movie_id:
|
250 |
-
movie_embeddings[movie['name']] =
|
251 |
break
|
252 |
return movie_embeddings
|
253 |
|
@@ -267,29 +259,38 @@ def search_movies(query, top_k=10):
|
|
267 |
|
268 |
if query_embedding is None:
|
269 |
query_embedding = encode_string(query)
|
270 |
-
embedding_list = vector_to_list(query_embedding)
|
271 |
|
272 |
with conn.cursor() as cur:
|
273 |
cur.execute(f"""
|
274 |
INSERT INTO {query_cache_table} (query_crc32, query, model_name, embedding)
|
275 |
VALUES (%s, %s, %s, %s)
|
276 |
ON CONFLICT (query_crc32) DO NOTHING
|
277 |
-
""", (query_crc32, query, model_name,
|
278 |
conn.commit()
|
279 |
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
|
|
289 |
|
290 |
results_html = "<ol>"
|
291 |
-
for
|
292 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
results_html += "</ol>"
|
294 |
|
295 |
search_time = time.time() - start_time
|
|
|
7 |
import torch
|
8 |
import psycopg2
|
9 |
import zlib
|
|
|
10 |
from urllib.parse import urlparse
|
11 |
|
12 |
# Настройки базы данных PostgreSQL
|
|
|
75 |
return
|
76 |
|
77 |
with conn.cursor() as cur:
|
78 |
+
# Создаем расширение pgvector если его нет
|
79 |
cur.execute("CREATE EXTENSION IF NOT EXISTS vector;")
|
80 |
|
81 |
+
# Удаляем существующие таблицы если они есть
|
82 |
+
cur.execute(f"DROP TABLE IF EXISTS {embeddings_table}, {query_cache_table};")
|
83 |
+
|
84 |
# Создаем таблицу для хранения эмбеддингов фильмов
|
85 |
cur.execute(f"""
|
86 |
+
CREATE TABLE {embeddings_table} (
|
87 |
movie_id INTEGER PRIMARY KEY,
|
88 |
embedding_crc32 BIGINT,
|
89 |
string_crc32 BIGINT,
|
90 |
model_name TEXT,
|
91 |
+
embedding vector(1024)
|
92 |
);
|
93 |
+
CREATE INDEX ON {embeddings_table} USING ivfflat (embedding vector_cosine_ops);
|
94 |
+
CREATE INDEX ON {embeddings_table} (string_crc32);
|
95 |
""")
|
96 |
|
97 |
# Создаем таблицу для кэширования запросов
|
98 |
cur.execute(f"""
|
99 |
+
CREATE TABLE {query_cache_table} (
|
100 |
query_crc32 BIGINT PRIMARY KEY,
|
101 |
query TEXT,
|
102 |
model_name TEXT,
|
103 |
+
embedding vector(1024),
|
104 |
created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP
|
105 |
);
|
106 |
+
CREATE INDEX ON {query_cache_table} USING ivfflat (embedding vector_cosine_ops);
|
107 |
+
CREATE INDEX ON {query_cache_table} (query_crc32);
|
108 |
+
CREATE INDEX ON {query_cache_table} (created_at);
|
109 |
""")
|
110 |
|
111 |
conn.commit()
|
|
|
142 |
conn.close()
|
143 |
return movies_to_process
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
def get_embedding_from_db(conn, table_name, crc32_column, crc32_value, model_name):
|
146 |
"""Получает эмбеддинг из базы данных."""
|
147 |
with conn.cursor() as cur:
|
|
|
149 |
(crc32_value, model_name))
|
150 |
result = cur.fetchone()
|
151 |
if result and result[0]:
|
152 |
+
return torch.tensor(result[0])
|
153 |
return None
|
154 |
|
155 |
def insert_embedding(conn, table_name, movie_id, embedding_crc32, string_crc32, embedding):
|
156 |
"""Вставляет эмбеддинг в базу данных."""
|
|
|
157 |
with conn.cursor() as cur:
|
158 |
try:
|
159 |
cur.execute(f"""
|
|
|
161 |
(movie_id, embedding_crc32, string_crc32, model_name, embedding)
|
162 |
VALUES (%s, %s, %s, %s, %s)
|
163 |
ON CONFLICT (movie_id) DO NOTHING
|
164 |
+
""", (movie_id, embedding_crc32, string_crc32, model_name, embedding.tolist()))
|
165 |
conn.commit()
|
166 |
return True
|
167 |
except Exception as e:
|
|
|
217 |
|
218 |
if existing_embedding is None:
|
219 |
embedding = encode_string(embedding_string)
|
220 |
+
embedding_crc32 = calculate_crc32(str(embedding.tolist()))
|
221 |
|
222 |
if insert_embedding(conn, embeddings_table, movie['id'], embedding_crc32, string_crc32, embedding):
|
223 |
print(f"Сохранен эмбеддинг для '{movie['name']}'")
|
|
|
234 |
"""Загружает все эмбеддинги фильмов из базы данных."""
|
235 |
movie_embeddings = {}
|
236 |
with conn.cursor() as cur:
|
237 |
+
cur.execute(f"SELECT movie_id, embedding FROM {embeddings_table}")
|
|
|
|
|
|
|
238 |
for movie_id, embedding in cur.fetchall():
|
239 |
# Находим название фильма по ID
|
240 |
for movie in movies_data:
|
241 |
if movie['id'] == movie_id:
|
242 |
+
movie_embeddings[movie['name']] = torch.tensor(embedding)
|
243 |
break
|
244 |
return movie_embeddings
|
245 |
|
|
|
259 |
|
260 |
if query_embedding is None:
|
261 |
query_embedding = encode_string(query)
|
|
|
262 |
|
263 |
with conn.cursor() as cur:
|
264 |
cur.execute(f"""
|
265 |
INSERT INTO {query_cache_table} (query_crc32, query, model_name, embedding)
|
266 |
VALUES (%s, %s, %s, %s)
|
267 |
ON CONFLICT (query_crc32) DO NOTHING
|
268 |
+
""", (query_crc32, query, model_name, query_embedding.tolist()))
|
269 |
conn.commit()
|
270 |
|
271 |
+
# Используем косинусное расстояние для поиска
|
272 |
+
with conn.cursor() as cur:
|
273 |
+
cur.execute(f"""
|
274 |
+
SELECT m.movie_id, m.embedding <=> %s as distance
|
275 |
+
FROM {embeddings_table} m
|
276 |
+
ORDER BY distance ASC
|
277 |
+
LIMIT %s
|
278 |
+
""", (query_embedding.tolist(), top_k))
|
279 |
+
|
280 |
+
results = cur.fetchall()
|
281 |
|
282 |
results_html = "<ol>"
|
283 |
+
for movie_id, distance in results:
|
284 |
+
# Находим название фильма по ID
|
285 |
+
movie_title = None
|
286 |
+
for movie in movies_data:
|
287 |
+
if movie['id'] == movie_id:
|
288 |
+
movie_title = movie['name']
|
289 |
+
break
|
290 |
+
|
291 |
+
if movie_title:
|
292 |
+
similarity = 1 - distance # Конвертируем расстояние в сходство
|
293 |
+
results_html += f"<li><strong>{movie_title}</strong> (Сходство: {similarity:.4f})</li>"
|
294 |
results_html += "</ol>"
|
295 |
|
296 |
search_time = time.time() - start_time
|