File size: 7,537 Bytes
7f9a235
 
db435b4
7f9a235
 
 
 
 
 
 
b71e276
 
 
 
7f9a235
 
b71e276
7f9a235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b71e276
 
 
 
 
 
 
 
 
 
 
 
6ea5c03
b71e276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f9a235
 
 
0425d1c
7f9a235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b71e276
 
 
 
 
 
6ea5c03
b71e276
 
 
7724866
b71e276
 
 
 
 
 
 
 
 
 
 
0425d1c
7f9a235
 
 
b71e276
7f9a235
 
 
 
 
b71e276
7f9a235
db435b4
 
 
7f9a235
 
b71e276
 
 
 
 
 
db435b4
 
b71e276
7f9a235
b71e276
db435b4
b71e276
 
7f9a235
b71e276
7724866
 
 
 
 
 
 
9feeb78
 
7724866
9feeb78
7724866
 
 
 
 
 
 
 
9feeb78
 
7724866
9feeb78
7724866
 
9feeb78
 
7724866
9feeb78
7724866
 
 
 
 
 
 
 
9feeb78
 
7724866
9feeb78
7724866
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import subprocess
import gradio as gr
import pandas as pd
from ansi2html import Ansi2HTMLConverter

ansi2html_converter = Ansi2HTMLConverter(inline=True)


def run_benchmark(kwargs):
    for key, value in kwargs.copy().items():
        if key.label == "Compare to Baseline":
            baseline = value
            kwargs.pop(key)
        elif key.label == "experiment_name":
            experiment_name = value
            kwargs.pop(key)

        elif key.label == "model":
            model = value
            kwargs.pop(key)
        elif key.label == "task":
            task = value
            kwargs.pop(key)
        elif key.label == "device":
            device = value
            kwargs.pop(key)
        elif key.label == "backend":
            backend = value
            kwargs.pop(key)
        elif key.label == "benchmark":
            benchmark = value
            kwargs.pop(key)
        else:
            continue

    if baseline:
        baseline_arguments = [
            "optimum-benchmark",
            "--config-dir",
            "./configs",
            "--config-name",
            "base_config",
            f"backend=pytorch",
            f"task={task}",
            f"model={model}",
            f"device={device}",
            f"benchmark={benchmark}",
            f"experiment_name=baseline",
        ]
        for component, value in kwargs.items():
            if f"{benchmark}." in component.label:
                label = component.label.replace(f"{benchmark}.", "benchmark.")
                if isinstance(component, gr.Dataframe):
                    for sub_key, sub_value in zip(component.headers, value[0]):
                        baseline_arguments.append(f"++{label}.{sub_key}={sub_value}")
                else:
                    baseline_arguments.append(f"{label}={value}")

        # yield from run_experiment(baseline_arguments) but get the return code
        baseline_return_code, html_text = yield from run_experiment(baseline_arguments, "")
        if baseline_return_code is not None and baseline_return_code != 0:
            yield gr.update(value=html_text), gr.update(interactive=True), gr.update(visible=False)
            return
    else:
        html_text = ""

    arguments = [
        "optimum-benchmark",
        "--config-dir",
        "./configs",
        "--config-name",
        "base_config",
        f"task={task}",
        f"model={model}",
        f"device={device}",
        f"backend={backend}",
        f"benchmark={benchmark}",
        f"experiment_name={experiment_name}",
    ]
    for component, value in kwargs.items():
        if f"{backend}." in component.label or f"{benchmark}." in component.label:
            label = component.label.replace(f"{backend}.", "backend.").replace(f"{benchmark}.", "benchmark.")

            if isinstance(component, gr.Dataframe):
                for sub_key, sub_value in zip(component.headers, value[0]):
                    arguments.append(f"++{label}.{sub_key}={sub_value}")
            else:
                arguments.append(f"{label}={value}")

    return_code, html_text = yield from run_experiment(arguments, html_text)
    if return_code is not None and return_code != 0:
        yield gr.update(value=html_text), gr.update(interactive=True), gr.update(visible=False)
        return

    if baseline:
        baseline_table = pd.read_csv(f"runs/baseline/{benchmark}_results.csv", index_col=0)
        table = pd.read_csv(f"runs/{experiment_name}/{benchmark}_results.csv", index_col=0)
        # concat tables
        table = pd.concat([baseline_table, table], axis=0)
        table = postprocess_table(table, experiment_name)
    else:
        table = pd.read_csv(f"runs/{experiment_name}/{benchmark}_results.csv", index_col=0)

    table_update = gr.update(visible=True, value={"headers": list(table.columns), "data": table.values.tolist()})
    yield gr.update(value=html_text), gr.update(interactive=True), table_update
    return


def run_experiment(args, html_text=""):
    command = "<br>".join(args)
    html_text += f"<h3>Running command:</h3>{command}"
    yield gr.update(value=html_text), gr.update(interactive=False), gr.update(visible=False)

    # stream subprocess output
    process = subprocess.Popen(
        args,
        stdout=subprocess.PIPE,
        stderr=subprocess.STDOUT,
        universal_newlines=True,
    )

    curr_ansi_text = ""
    for ansi_line in iter(process.stdout.readline, ""):
        # stream process output to stdout
        print(ansi_line, end="")
        # skip torch.distributed.nn.jit.instantiator messages
        if "torch.distributed.nn.jit.instantiator" in ansi_line:
            continue
        # process download messages
        if "Downloading " in curr_ansi_text and "Downloading " in ansi_line:
            curr_ansi_text = curr_ansi_text.split("\n")[:-2]
            print(curr_ansi_text)
            curr_ansi_text.append(ansi_line)
            curr_ansi_text = "\n".join(curr_ansi_text)
        else:
            # append line to ansi text
            curr_ansi_text += ansi_line
        # convert ansi to html
        curr_html_text = ansi2html_converter.convert(curr_ansi_text)
        # stream html output to gradio
        cumul_html_text = html_text + "<br><h3>Streaming logs:</h3>" + curr_html_text
        yield gr.update(value=cumul_html_text), gr.update(interactive=False), gr.update(visible=False)

    return process.returncode, cumul_html_text


def postprocess_table(table, experiment_name):
    table["experiment_name"] = ["baseline", experiment_name]
    table = table.set_index("experiment_name")
    table.reset_index(inplace=True)
    if "forward.latency(s)" in table.columns:
        table["forward.latency.reduction(%)"] = (
            table["forward.latency(s)"] / table["forward.latency(s)"].iloc[0] - 1
        ) * 100
        table["forward.latency.reduction(%)"] = table["forward.latency.reduction(%)"].round(2)

    if "forward.throughput(samples/s)" in table.columns:
        table["forward.throughput.speedup(%)"] = (
            table["forward.throughput(samples/s)"] / table["forward.throughput(samples/s)"].iloc[0] - 1
        ) * 100
        table["forward.throughput.speedup(%)"] = table["forward.throughput.speedup(%)"].round(2)

    if "forward.peak_memory(MB)" in table.columns:
        table["forward.peak_memory.reduction(%)"] = (
            table["forward.peak_memory(MB)"] / table["forward.peak_memory(MB)"].iloc[0] - 1
        ) * 100
        table["forward.peak_memory.reduction(%)"] = table["forward.peak_memory.savings(%)"].round(2)

    if "generate.latency(s)" in table.columns:
        table["generate.latency.reduction(%)"] = (
            table["generate.latency(s)"] / table["generate.latency(s)"].iloc[0] - 1
        ) * 100
        table["generate.latency.reduction(%)"] = table["generate.latency.reduction(%)"].round(2)

    if "generate.throughput(tokens/s)" in table.columns:
        table["generate.throughput.speedup(%)"] = (
            table["generate.throughput(tokens/s)"] / table["generate.throughput(tokens/s)"].iloc[0] - 1
        ) * 100
        table["generate.throughput.speedup(%)"] = table["generate.throughput.speedup(%)"].round(2)

    if "generate.peak_memory(MB)" in table.columns:
        table["generate.peak_memory.reduction(%)"] = (
            table["generate.peak_memory(MB)"] / table["generate.peak_memory(MB)"].iloc[0] - 1
        ) * 100
        table["generate.peak_memory.reduction(%)"] = table["generate.peak_memory.reduction(%)"].round(2)

    return table