File size: 4,007 Bytes
d1e3b68
 
 
 
 
 
7f9a235
 
 
 
 
 
 
 
 
d1e3b68
7f9a235
 
d1e3b68
 
 
 
7f9a235
d1e3b68
7f9a235
d1e3b68
 
 
 
 
 
 
 
 
 
 
 
 
7f9a235
d1e3b68
7f9a235
d1e3b68
 
 
7f9a235
d1e3b68
 
7f9a235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1e3b68
7f9a235
d1e3b68
 
 
 
 
7f9a235
 
 
 
 
 
d1e3b68
7f9a235
d1e3b68
 
7f9a235
 
 
 
 
d1e3b68
 
7f9a235
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import random
import gradio as gr
from optimum_benchmark.task_utils import (
    TASKS_TO_AUTOMODELS,
    infer_task_from_model_name_or_path,
)
from run import run_benchmark
from configs import (
    get_training_config,
    get_inference_config,
    get_neural_compressor_config,
    get_onnxruntime_config,
    get_openvino_config,
    get_pytorch_config,
)

BACKENDS = ["pytorch", "onnxruntime", "openvino", "neural-compressor"]
BENCHMARKS = ["inference", "training"]


with gr.Blocks() as demo:
    # title text
    gr.HTML("<h1 style='text-align: center'>🤗 Optimum Benchmark UI 🏋️</h1>")
    # explanation text
    gr.Markdown("This is a demo space of [Optimum-Benchmark](https://github.com/huggingface/optimum-benchmark.git).")

    model = gr.Textbox(
        label="model",
        value="bert-base-uncased",
    )
    task = gr.Dropdown(
        label="task",
        value="text-classification",
        choices=list(TASKS_TO_AUTOMODELS.keys()),
    )
    device = gr.Dropdown(
        value="cpu",
        label="device",
        choices=["cpu", "cuda"],
    )
    experiment = gr.Textbox(
        label="experiment_name",
        value=f"experiment_{random.getrandbits(16)}",
    )
    model.submit(fn=infer_task_from_model_name_or_path, inputs=model, outputs=task)

    with gr.Row():
        with gr.Column():
            with gr.Row():
                backend = gr.Dropdown(
                    label="backend",
                    choices=BACKENDS,
                    value=BACKENDS[0],
                )

            with gr.Row() as backend_configs:
                with gr.Accordion(label="Pytorch Config", open=False, visible=True):
                    pytorch_config = get_pytorch_config()
                with gr.Accordion(label="OnnxRunTime Config", open=False, visible=False):
                    onnxruntime_config = get_onnxruntime_config()
                with gr.Accordion(label="OpenVINO Config", open=False, visible=False):
                    openvino_config = get_openvino_config()
                with gr.Accordion(label="Neural Compressor Config", open=False, visible=False):
                    neural_compressor_config = get_neural_compressor_config()

        # hide backend configs based on backend
        backend.change(
            inputs=backend,
            outputs=backend_configs.children,
            fn=lambda value: [gr.update(visible=value == key) for key in BACKENDS],
        )

        with gr.Column():
            with gr.Row():
                benchmark = gr.Dropdown(
                    label="benchmark",
                    choices=BENCHMARKS,
                    value=BENCHMARKS[0],
                )

            with gr.Row() as benchmark_configs:
                with gr.Accordion(label="Inference Config", open=False, visible=True):
                    inference_config = get_inference_config()
                with gr.Accordion(label="Training Config", open=False, visible=False):
                    training_config = get_training_config()

        # hide benchmark configs based on benchmark
        benchmark.change(
            inputs=benchmark,
            outputs=benchmark_configs.children,
            fn=lambda value: [gr.update(visible=value == key) for key in BENCHMARKS],
        )

    button = gr.Button(value="Run Benchmark", variant="primary")
    with gr.Accordion(label="LOGS", open=True, visible=False):
        output = gr.HTML()

    button.click(
        fn=run_benchmark,
        inputs={
            experiment,
            model,
            task,
            device,
            backend,
            benchmark,
            *pytorch_config,
            *openvino_config,
            *onnxruntime_config,
            *neural_compressor_config,
            *inference_config,
            *training_config,
        },
        outputs=output,
        queue=True,
    )
    button.click(
        inputs=[],
        outputs=output.parent,
        fn=lambda: gr.update(visible=True),
    )


demo.queue().launch()