Spaces:
Running
Running
File size: 8,565 Bytes
4daeefd a6d3fdf 063cbeb d1e3b68 063cbeb 7724866 0f9db6d 7f9a235 8cd2626 a6d3fdf 0f9db6d a6d3fdf 8cd2626 a6d3fdf 8cd2626 a6d3fdf 0f9db6d 778bc8e 0f9db6d a6d3fdf 8cd2626 a6d3fdf 7f9a235 d1e3b68 a6d3fdf 778bc8e a6d3fdf 063cbeb a6d3fdf 063cbeb a6d3fdf 8cd2626 a6d3fdf 0f9db6d a6d3fdf a919d64 2f8989d 0f9db6d a6d3fdf 8cd2626 a6d3fdf 063cbeb 8cd2626 063cbeb 0f9db6d 063cbeb 0f9db6d 5468ec9 063cbeb 5468ec9 063cbeb 5468ec9 063cbeb 5468ec9 063cbeb 5468ec9 063cbeb a6d3fdf 0f9db6d a6d3fdf 0f9db6d d1e3b68 0f9db6d 8cd2626 0f9db6d 5468ec9 0f9db6d 8cd2626 0f9db6d 5468ec9 0f9db6d 063cbeb 8cd2626 063cbeb 0f9db6d 8cd2626 0f9db6d 063cbeb 8cd2626 063cbeb 0f9db6d d1e3b68 0f9db6d a6d3fdf 0f9db6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import os
import time
import traceback
import gradio as gr
from huggingface_hub import create_repo, whoami
from config_store import (
get_process_config,
get_inference_config,
get_openvino_config,
get_pytorch_config,
get_ipex_config,
)
from optimum_benchmark.launchers.base import Launcher # noqa
from optimum_benchmark.backends.openvino.utils import TASKS_TO_OVMODEL
from optimum_benchmark.backends.transformers_utils import TASKS_TO_MODEL_LOADERS
from optimum_benchmark.backends.ipex.utils import TASKS_TO_IPEXMODEL
from optimum_benchmark import (
BenchmarkConfig,
PyTorchConfig,
OVConfig,
IPEXConfig,
ProcessConfig,
InferenceConfig,
Benchmark,
)
from optimum_benchmark.logging_utils import setup_logging
DEVICE = "cpu"
LAUNCHER = "process"
SCENARIO = "inference"
BACKENDS = ["openvino", "pytorch"]
MODELS = [
"google-bert/bert-base-uncased",
"openai-community/gpt2",
]
TASKS = (
set(TASKS_TO_OVMODEL.keys())
& set(TASKS_TO_IPEXMODEL.keys())
& set(TASKS_TO_MODEL_LOADERS.keys())
)
def run_benchmark(kwargs, oauth_token: gr.OAuthToken):
if oauth_token.token is None:
gr.Error("Please login to be able to run the benchmark.")
return tuple(None for _ in BACKENDS)
timestamp = time.strftime("%Y-%m-%d-%H-%M-%S")
username = whoami(oauth_token.token)["name"]
repo_id = f"{username}/benchmarks"
token = oauth_token.token
create_repo(repo_id, token=token, repo_type="dataset", exist_ok=True)
gr.Info(f'Benchmark will be pushed to "{username}/benchmarks" on the Hub')
configs = {
"process": {},
"inference": {},
"openvino": {},
"pytorch": {},
"ipex": {},
}
for key, value in kwargs.items():
if key.label == "model":
model = value
elif key.label == "task":
task = value
elif key.label == "backends":
backends = value
elif "." in key.label:
backend, argument = key.label.split(".")
configs[backend][argument] = value
else:
continue
for key in configs.keys():
for k, v in configs[key].items():
if "kwargs" in k:
configs[key][k] = eval(v)
configs["process"] = ProcessConfig(**configs.pop("process"))
configs["inference"] = InferenceConfig(**configs.pop("inference"))
configs["openvino"] = OVConfig(
task=task,
model=model,
device=DEVICE,
**configs["openvino"],
)
configs["pytorch"] = PyTorchConfig(
task=task,
model=model,
device=DEVICE,
**configs["pytorch"],
)
configs["ipex"] = IPEXConfig(
task=task,
model=model,
device=DEVICE,
**configs["ipex"],
)
outputs = {
"openvino": "Running benchmark for OpenVINO backend",
"pytorch": "Running benchmark for PyTorch backend",
"ipex": "Running benchmark for IPEX backend",
}
yield tuple(outputs[b] for b in BACKENDS)
for backend in backends:
try:
benchmark_name = f"{timestamp}/{backend}"
benchmark_config = BenchmarkConfig(
name=benchmark_name,
backend=configs[backend],
launcher=configs[LAUNCHER],
scenario=configs[SCENARIO],
)
benchmark_config.push_to_hub(
repo_id=repo_id, subfolder=benchmark_name, token=oauth_token.token
)
benchmark_report = Benchmark.launch(benchmark_config)
benchmark_report.push_to_hub(
repo_id=repo_id, subfolder=benchmark_name, token=oauth_token.token
)
benchmark = Benchmark(config=benchmark_config, report=benchmark_report)
benchmark.push_to_hub(
repo_id=repo_id, subfolder=benchmark_name, token=oauth_token.token
)
gr.Info(f"Pushed benchmark to {username}/benchmarks/{benchmark_name}")
outputs[backend] = f"\n{benchmark_report.to_markdown_text()}"
yield tuple(outputs[b] for b in BACKENDS)
except Exception:
gr.Error(f"Error while running benchmark for {backend}")
outputs[backend] = f"\n{traceback.format_exc()}"
yield tuple(outputs[b] for b in BACKENDS)
def build_demo():
with gr.Blocks() as demo:
# add login button
gr.LoginButton(min_width=250)
# add image
gr.Markdown(
"""<img src="https://huggingface.co/spaces/optimum/optimum-benchmark-ui/resolve/main/huggy_bench.png" style="display: block; margin-left: auto; margin-right: auto; width: 30%;">"""
)
# title text
gr.Markdown(
"<h1 style='text-align: center'>🤗 Optimum-Benchmark Interface 🏋️</h1>"
)
# explanation text
gr.HTML(
"<h3 style='text-align: center'>"
"Zero code Gradio interface of "
"<a href='https://github.com/huggingface/optimum-benchmark.git'>"
"Optimum-Benchmark"
"</a>"
"<br>"
"</h3>"
"<p style='text-align: center'>"
"This Space uses Optimum Benchmark to automatically benchmark a model from the Hub on different backends."
"<br>"
"The results (config and report) will be pushed under your namespace in a benchmark repository on the Hub."
)
model = gr.Dropdown(
label="model",
choices=MODELS,
value=MODELS[0],
info="Model to run the benchmark on.",
)
task = gr.Dropdown(
label="task",
choices=TASKS,
value="feature-extraction",
info="Task to run the benchmark on.",
)
backends = gr.CheckboxGroup(
interactive=True,
label="backends",
choices=BACKENDS,
value=BACKENDS,
info="Backends to run the benchmark on.",
)
with gr.Row():
with gr.Accordion(label="Process Config", open=False, visible=True):
process_config = get_process_config()
with gr.Row():
with gr.Accordion(label="Scenario Config", open=False, visible=True):
inference_config = get_inference_config()
with gr.Row() as backend_configs:
with gr.Accordion(label="OpenVINO Config", open=False, visible=True):
openvino_config = get_openvino_config()
with gr.Accordion(label="PyTorch Config", open=False, visible=True):
pytorch_config = get_pytorch_config()
with gr.Accordion(label="IPEX Config", open=False, visible=True):
ipex_config = get_ipex_config()
backends.change(
inputs=backends,
outputs=backend_configs.children,
fn=lambda values: [
gr.update(visible=value in values) for value in BACKENDS
],
)
with gr.Row():
button = gr.Button(value="Run Benchmark", variant="primary")
with gr.Row() as md_output:
with gr.Accordion(label="OpenVINO Output", open=True, visible=True):
openvino_output = gr.Markdown()
with gr.Accordion(label="PyTorch Output", open=True, visible=True):
pytorch_output = gr.Markdown()
with gr.Accordion(label="IPEX Output", open=True, visible=True):
ipex_output = gr.Markdown()
backends.change(
inputs=backends,
outputs=md_output.children,
fn=lambda values: [
gr.update(visible=value in values) for value in BACKENDS
],
)
button.click(
fn=run_benchmark,
inputs={
task,
model,
backends,
*process_config.values(),
*inference_config.values(),
*openvino_config.values(),
*pytorch_config.values(),
*ipex_config.values(),
},
outputs={
openvino_output,
pytorch_output,
ipex_output,
},
concurrency_limit=1,
)
return demo
if __name__ == "__main__":
os.environ["LOG_TO_FILE"] = "0"
os.environ["LOG_LEVEL"] = "INFO"
setup_logging(level="INFO", prefix="MAIN-PROCESS")
demo = build_demo()
demo.queue(max_size=10).launch()
|