File size: 8,565 Bytes
4daeefd
a6d3fdf
063cbeb
d1e3b68
063cbeb
 
 
7724866
0f9db6d
7f9a235
 
 
8cd2626
a6d3fdf
0f9db6d
a6d3fdf
 
8cd2626
a6d3fdf
 
 
 
8cd2626
a6d3fdf
 
 
 
 
 
 
 
0f9db6d
 
778bc8e
0f9db6d
 
 
 
 
a6d3fdf
8cd2626
a6d3fdf
7f9a235
d1e3b68
a6d3fdf
 
 
778bc8e
 
a6d3fdf
063cbeb
a6d3fdf
063cbeb
 
 
 
 
a6d3fdf
 
 
 
 
 
8cd2626
a6d3fdf
 
 
 
 
 
 
0f9db6d
 
a6d3fdf
 
 
 
 
 
a919d64
 
 
 
2f8989d
0f9db6d
 
a6d3fdf
 
 
 
 
 
 
 
 
 
 
 
 
8cd2626
 
 
 
 
 
a6d3fdf
063cbeb
 
 
8cd2626
063cbeb
0f9db6d
063cbeb
0f9db6d
 
5468ec9
 
 
 
 
 
 
 
 
063cbeb
5468ec9
 
 
063cbeb
5468ec9
 
 
063cbeb
5468ec9
063cbeb
5468ec9
063cbeb
 
 
 
 
 
 
 
 
 
a6d3fdf
 
0f9db6d
 
 
 
a6d3fdf
0f9db6d
 
 
 
d1e3b68
0f9db6d
 
 
 
 
 
 
 
 
 
 
 
 
 
8cd2626
 
 
 
0f9db6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5468ec9
 
 
 
0f9db6d
 
 
 
 
8cd2626
 
0f9db6d
 
 
 
 
 
 
 
 
 
5468ec9
0f9db6d
063cbeb
 
 
 
 
8cd2626
 
063cbeb
 
 
 
 
 
 
 
0f9db6d
 
 
 
 
 
 
 
 
 
 
8cd2626
0f9db6d
063cbeb
 
 
8cd2626
063cbeb
0f9db6d
 
 
 
d1e3b68
 
0f9db6d
 
 
 
a6d3fdf
0f9db6d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os
import time
import traceback
import gradio as gr
from huggingface_hub import create_repo, whoami


from config_store import (
    get_process_config,
    get_inference_config,
    get_openvino_config,
    get_pytorch_config,
    get_ipex_config,
)
from optimum_benchmark.launchers.base import Launcher  # noqa
from optimum_benchmark.backends.openvino.utils import TASKS_TO_OVMODEL
from optimum_benchmark.backends.transformers_utils import TASKS_TO_MODEL_LOADERS
from optimum_benchmark.backends.ipex.utils import TASKS_TO_IPEXMODEL
from optimum_benchmark import (
    BenchmarkConfig,
    PyTorchConfig,
    OVConfig,
    IPEXConfig,
    ProcessConfig,
    InferenceConfig,
    Benchmark,
)
from optimum_benchmark.logging_utils import setup_logging


DEVICE = "cpu"
LAUNCHER = "process"
SCENARIO = "inference"
BACKENDS = ["openvino", "pytorch"]
MODELS = [
    "google-bert/bert-base-uncased",
    "openai-community/gpt2",
]
TASKS = (
    set(TASKS_TO_OVMODEL.keys())
    & set(TASKS_TO_IPEXMODEL.keys())
    & set(TASKS_TO_MODEL_LOADERS.keys())
)


def run_benchmark(kwargs, oauth_token: gr.OAuthToken):
    if oauth_token.token is None:
        gr.Error("Please login to be able to run the benchmark.")
        return tuple(None for _ in BACKENDS)

    timestamp = time.strftime("%Y-%m-%d-%H-%M-%S")
    username = whoami(oauth_token.token)["name"]
    repo_id = f"{username}/benchmarks"
    token = oauth_token.token

    create_repo(repo_id, token=token, repo_type="dataset", exist_ok=True)
    gr.Info(f'Benchmark will be pushed to "{username}/benchmarks" on the Hub')

    configs = {
        "process": {},
        "inference": {},
        "openvino": {},
        "pytorch": {},
        "ipex": {},
    }

    for key, value in kwargs.items():
        if key.label == "model":
            model = value
        elif key.label == "task":
            task = value
        elif key.label == "backends":
            backends = value
        elif "." in key.label:
            backend, argument = key.label.split(".")
            configs[backend][argument] = value
        else:
            continue

    for key in configs.keys():
        for k, v in configs[key].items():
            if "kwargs" in k:
                configs[key][k] = eval(v)

    configs["process"] = ProcessConfig(**configs.pop("process"))
    configs["inference"] = InferenceConfig(**configs.pop("inference"))

    configs["openvino"] = OVConfig(
        task=task,
        model=model,
        device=DEVICE,
        **configs["openvino"],
    )
    configs["pytorch"] = PyTorchConfig(
        task=task,
        model=model,
        device=DEVICE,
        **configs["pytorch"],
    )
    configs["ipex"] = IPEXConfig(
        task=task,
        model=model,
        device=DEVICE,
        **configs["ipex"],
    )

    outputs = {
        "openvino": "Running benchmark for OpenVINO backend",
        "pytorch": "Running benchmark for PyTorch backend",
        "ipex": "Running benchmark for IPEX backend",
    }

    yield tuple(outputs[b] for b in BACKENDS)

    for backend in backends:
        try:
            benchmark_name = f"{timestamp}/{backend}"
            benchmark_config = BenchmarkConfig(
                name=benchmark_name,
                backend=configs[backend],
                launcher=configs[LAUNCHER],
                scenario=configs[SCENARIO],
            )
            benchmark_config.push_to_hub(
                repo_id=repo_id, subfolder=benchmark_name, token=oauth_token.token
            )
            benchmark_report = Benchmark.launch(benchmark_config)
            benchmark_report.push_to_hub(
                repo_id=repo_id, subfolder=benchmark_name, token=oauth_token.token
            )
            benchmark = Benchmark(config=benchmark_config, report=benchmark_report)
            benchmark.push_to_hub(
                repo_id=repo_id, subfolder=benchmark_name, token=oauth_token.token
            )
            gr.Info(f"Pushed benchmark to {username}/benchmarks/{benchmark_name}")

            outputs[backend] = f"\n{benchmark_report.to_markdown_text()}"

            yield tuple(outputs[b] for b in BACKENDS)

        except Exception:
            gr.Error(f"Error while running benchmark for {backend}")

            outputs[backend] = f"\n{traceback.format_exc()}"

            yield tuple(outputs[b] for b in BACKENDS)


def build_demo():
    with gr.Blocks() as demo:
        # add login button
        gr.LoginButton(min_width=250)

        # add image
        gr.Markdown(
            """<img src="https://huggingface.co/spaces/optimum/optimum-benchmark-ui/resolve/main/huggy_bench.png" style="display: block; margin-left: auto; margin-right: auto; width: 30%;">"""
        )

        # title text
        gr.Markdown(
            "<h1 style='text-align: center'>🤗 Optimum-Benchmark Interface 🏋️</h1>"
        )

        # explanation text
        gr.HTML(
            "<h3 style='text-align: center'>"
            "Zero code Gradio interface of "
            "<a href='https://github.com/huggingface/optimum-benchmark.git'>"
            "Optimum-Benchmark"
            "</a>"
            "<br>"
            "</h3>"
            "<p style='text-align: center'>"
            "This Space uses Optimum Benchmark to automatically benchmark a model from the Hub on different backends."
            "<br>"
            "The results (config and report) will be pushed under your namespace in a benchmark repository on the Hub."
        )

        model = gr.Dropdown(
            label="model",
            choices=MODELS,
            value=MODELS[0],
            info="Model to run the benchmark on.",
        )
        task = gr.Dropdown(
            label="task",
            choices=TASKS,
            value="feature-extraction",
            info="Task to run the benchmark on.",
        )
        backends = gr.CheckboxGroup(
            interactive=True,
            label="backends",
            choices=BACKENDS,
            value=BACKENDS,
            info="Backends to run the benchmark on.",
        )

        with gr.Row():
            with gr.Accordion(label="Process Config", open=False, visible=True):
                process_config = get_process_config()

        with gr.Row():
            with gr.Accordion(label="Scenario Config", open=False, visible=True):
                inference_config = get_inference_config()

        with gr.Row() as backend_configs:
            with gr.Accordion(label="OpenVINO Config", open=False, visible=True):
                openvino_config = get_openvino_config()
            with gr.Accordion(label="PyTorch Config", open=False, visible=True):
                pytorch_config = get_pytorch_config()
            with gr.Accordion(label="IPEX Config", open=False, visible=True):
                ipex_config = get_ipex_config()

        backends.change(
            inputs=backends,
            outputs=backend_configs.children,
            fn=lambda values: [
                gr.update(visible=value in values) for value in BACKENDS
            ],
        )

        with gr.Row():
            button = gr.Button(value="Run Benchmark", variant="primary")

        with gr.Row() as md_output:
            with gr.Accordion(label="OpenVINO Output", open=True, visible=True):
                openvino_output = gr.Markdown()
            with gr.Accordion(label="PyTorch Output", open=True, visible=True):
                pytorch_output = gr.Markdown()
            with gr.Accordion(label="IPEX Output", open=True, visible=True):
                ipex_output = gr.Markdown()

        backends.change(
            inputs=backends,
            outputs=md_output.children,
            fn=lambda values: [
                gr.update(visible=value in values) for value in BACKENDS
            ],
        )

        button.click(
            fn=run_benchmark,
            inputs={
                task,
                model,
                backends,
                *process_config.values(),
                *inference_config.values(),
                *openvino_config.values(),
                *pytorch_config.values(),
                *ipex_config.values(),
            },
            outputs={
                openvino_output,
                pytorch_output,
                ipex_output,
            },
            concurrency_limit=1,
        )

    return demo


if __name__ == "__main__":
    os.environ["LOG_TO_FILE"] = "0"
    os.environ["LOG_LEVEL"] = "INFO"
    setup_logging(level="INFO", prefix="MAIN-PROCESS")

    demo = build_demo()
    demo.queue(max_size=10).launch()