auto-benchmark / configs.py
IlyasMoutawwakil's picture
interactive backend and benchmark
7f9a235
raw
history blame
8.14 kB
import gradio as gr
def get_base_backend_config(backend_name="pytorch"):
return [
# seed
gr.Textbox(
value=42,
label=f"{backend_name}.seed",
info="Sets seed for reproducibility",
),
# inter_op_num_threads
gr.Textbox(
value="null",
label=f"{backend_name}.inter_op_num_threads",
info="Use null for default and -1 for cpu_count()",
),
# intra_op_num_threads
gr.Textbox(
value="null",
label=f"{backend_name}.intra_op_num_threads",
info="Use null for default and -1 for cpu_count()",
),
# initial_isolation_check
gr.Checkbox(
value=True,
label=f"{backend_name}.initial_isolation_check",
info="Makes sure that initially, no other process is running on the target device",
),
# continous_isolation_check
gr.Checkbox(
value=True,
label=f"{backend_name}.continous_isolation_check",
info="Makes sure that throughout the benchmark, no other process is running on the target device",
),
# delete_cache
gr.Checkbox(
value=False,
label=f"{backend_name}.delete_cache",
info="Deletes model cache (weights & configs) after benchmark is done",
),
]
def get_pytorch_config():
return get_base_backend_config(backend_name="pytorch") + [
# no_weights
gr.Checkbox(
value=False,
label="pytorch.no_weights",
info="Generates random weights instead of downloading pretrained ones",
),
# # device_map
# gr.Dropdown(
# value="null",
#
# label="pytorch.device_map",
# choices=["null", "auto", "sequential"],
# info="Use null for default and `auto` or `sequential` the same way as in `from_pretrained`",
# ),
# torch_dtype
gr.Dropdown(
value="null",
label="pytorch.torch_dtype",
choices=["null", "bfloat16", "float16", "float32", "auto"],
info="Use null for default and `auto` for automatic dtype selection",
),
# amp_autocast
gr.Checkbox(
value=False,
label="pytorch.amp_autocast",
info="Enables Pytorch's native Automatic Mixed Precision",
),
# amp_dtype
gr.Dropdown(
value="null",
label="pytorch.amp_dtype",
info="Use null for default",
choices=["null", "bfloat16", "float16"],
),
# torch_compile
gr.Checkbox(
value=False,
label="pytorch.torch_compile",
info="Compiles the model with torch.compile",
),
# bettertransformer
gr.Checkbox(
value=False,
label="pytorch.bettertransformer",
info="Applies optimum.BetterTransformer for fastpath anf optimized attention",
),
# quantization_scheme
gr.Dropdown(
value="null",
choices=["null", "gptq", "bnb"],
label="pytorch.quantization_scheme",
info="Use null for no quantization",
),
# # use_ddp
# gr.Checkbox(
# value=False,
#
# label="pytorch.use_ddp",
# info="Uses DistributedDataParallel for multi-gpu training",
# ),
# peft_strategy
gr.Textbox(
value="null",
label="pytorch.peft_strategy",
),
]
def get_onnxruntime_config():
return get_base_backend_config(backend_name="onnxruntime")
# no_weights
# no_weights: bool = False
# # export options
# export: bool = True
# use_cache: bool = True
# use_merged: bool = False
# torch_dtype: Optional[str] = None
# # provider options
# provider: str = "${infer_provider:${device}}"
# device_id: Optional[int] = "${oc.deprecated:backend.provider_options.device_id}"
# provider_options: Dict[str, Any] = field(default_factory=lambda: {"device_id": "${infer_device_id:${device}}"})
# # inference options
# use_io_binding: bool = "${is_gpu:${device}}"
# enable_profiling: bool = "${oc.deprecated:backend.session_options.enable_profiling}"
# session_options: Dict[str, Any] = field(
# default_factory=lambda: {"enable_profiling": "${is_profiling:${benchmark.name}}"}
# )
# # optimization options
# optimization: bool = False
# optimization_config: Dict[str, Any] = field(default_factory=dict)
# # quantization options
# quantization: bool = False
# quantization_config: Dict[str, Any] = field(default_factory=dict)
# # calibration options
# calibration: bool = False
# calibration_config: Dict[str, Any] = field(default_factory=dict)
# # null, O1, O2, O3, O4
# auto_optimization: Optional[str] = None
# auto_optimization_config: Dict[str, Any] = field(default_factory=dict)
# # null, arm64, avx2, avx512, avx512_vnni, tensorrt
# auto_quantization: Optional[str] = None
# auto_quantization_config: Dict[str, Any] = field(default_factory=dict)
# # ort-training is basically a different package so we might need to seperate these two backends in the future
# use_inference_session: bool = "${is_inference:${benchmark.name}}"
# # training options
# use_ddp: bool = False
# ddp_config: Dict[str, Any] = field(default_factory=dict)
# # peft options
# peft_strategy: Optional[str] = None
# peft_config: Dict[str, Any] = field(default_factory=dict)
def get_openvino_config():
return get_base_backend_config(backend_name="openvino")
def get_neural_compressor_config():
return get_base_backend_config(backend_name="neural_compressor")
def get_inference_config():
return [
# duration
gr.Textbox(
value=10,
label="inference.duration",
info="Minimum duration of benchmark in seconds",
),
# warmup runs
gr.Textbox(
value=10,
label="inference.warmup_runs",
info="Number of warmup runs before measurements",
),
# memory
gr.Checkbox(
value=False,
label="inference.memory",
info="Measures the peak memory footprint",
),
# energy
gr.Checkbox(
value=False,
label="inference.energy",
info="Measures energy consumption and carbon emissions",
),
# input_shapes
gr.Dataframe(
type="array",
value=[[2, 16]],
row_count=(1, "static"),
col_count=(2, "dynamic"),
label="inference.input_shapes",
headers=["batch_size", "sequence_length"],
info="Controllable input shapes, add more columns for more inputs",
),
# forward kwargs
gr.Dataframe(
type="array",
value=[[False]],
headers=["return_dict"],
row_count=(1, "static"),
col_count=(1, "dynamic"),
label="inference.forward_kwargs",
info="Keyword arguments for the forward pass, add more columns for more arguments",
),
]
def get_training_config():
return [
# warmup steps
gr.Textbox(
value=40,
label="training.warmup_steps",
),
# dataset_shapes
gr.Dataframe(
type="array",
value=[[500, 16]],
headers=["dataset_size", "sequence_length"],
row_count=(1, "static"),
col_count=(2, "dynamic"),
label="training.dataset_shapes",
),
# training_arguments
gr.Dataframe(
value=[[2]],
type="array",
row_count=(1, "static"),
col_count=(1, "dynamic"),
label="training.training_arguments",
headers=["per_device_train_batch_size"],
),
]