Spaces:
Running
Running
import gradio as gr | |
def get_base_backend_config(backend_name="pytorch"): | |
return [ | |
# seed | |
gr.Textbox( | |
value=42, | |
label=f"{backend_name}.seed", | |
info="Sets seed for reproducibility", | |
), | |
# inter_op_num_threads | |
gr.Textbox( | |
value="null", | |
label=f"{backend_name}.inter_op_num_threads", | |
info="Use null for default and -1 for cpu_count()", | |
), | |
# intra_op_num_threads | |
gr.Textbox( | |
value="null", | |
label=f"{backend_name}.intra_op_num_threads", | |
info="Use null for default and -1 for cpu_count()", | |
), | |
# initial_isolation_check | |
gr.Checkbox( | |
value=True, | |
label=f"{backend_name}.initial_isolation_check", | |
info="Makes sure that initially, no other process is running on the target device", | |
), | |
# continous_isolation_check | |
gr.Checkbox( | |
value=True, | |
label=f"{backend_name}.continous_isolation_check", | |
info="Makes sure that throughout the benchmark, no other process is running on the target device", | |
), | |
# delete_cache | |
gr.Checkbox( | |
value=False, | |
label=f"{backend_name}.delete_cache", | |
info="Deletes model cache (weights & configs) after benchmark is done", | |
), | |
] | |
def get_pytorch_config(): | |
return get_base_backend_config(backend_name="pytorch") + [ | |
# no_weights | |
gr.Checkbox( | |
value=False, | |
label="pytorch.no_weights", | |
info="Generates random weights instead of downloading pretrained ones", | |
), | |
# # device_map | |
# gr.Dropdown( | |
# value="null", | |
# | |
# label="pytorch.device_map", | |
# choices=["null", "auto", "sequential"], | |
# info="Use null for default and `auto` or `sequential` the same way as in `from_pretrained`", | |
# ), | |
# torch_dtype | |
gr.Dropdown( | |
value="null", | |
label="pytorch.torch_dtype", | |
choices=["null", "bfloat16", "float16", "float32", "auto"], | |
info="Use null for default and `auto` for automatic dtype selection", | |
), | |
# amp_autocast | |
gr.Checkbox( | |
value=False, | |
label="pytorch.amp_autocast", | |
info="Enables Pytorch's native Automatic Mixed Precision", | |
), | |
# amp_dtype | |
gr.Dropdown( | |
value="null", | |
label="pytorch.amp_dtype", | |
info="Use null for default", | |
choices=["null", "bfloat16", "float16"], | |
), | |
# torch_compile | |
gr.Checkbox( | |
value=False, | |
label="pytorch.torch_compile", | |
info="Compiles the model with torch.compile", | |
), | |
# bettertransformer | |
gr.Checkbox( | |
value=False, | |
label="pytorch.bettertransformer", | |
info="Applies optimum.BetterTransformer for fastpath anf optimized attention", | |
), | |
# quantization_scheme | |
gr.Dropdown( | |
value="null", | |
choices=["null", "gptq", "bnb"], | |
label="pytorch.quantization_scheme", | |
info="Use null for no quantization", | |
), | |
# # use_ddp | |
# gr.Checkbox( | |
# value=False, | |
# | |
# label="pytorch.use_ddp", | |
# info="Uses DistributedDataParallel for multi-gpu training", | |
# ), | |
# peft_strategy | |
gr.Textbox( | |
value="null", | |
label="pytorch.peft_strategy", | |
), | |
] | |
def get_onnxruntime_config(): | |
return get_base_backend_config(backend_name="onnxruntime") | |
# no_weights | |
# no_weights: bool = False | |
# # export options | |
# export: bool = True | |
# use_cache: bool = True | |
# use_merged: bool = False | |
# torch_dtype: Optional[str] = None | |
# # provider options | |
# provider: str = "${infer_provider:${device}}" | |
# device_id: Optional[int] = "${oc.deprecated:backend.provider_options.device_id}" | |
# provider_options: Dict[str, Any] = field(default_factory=lambda: {"device_id": "${infer_device_id:${device}}"}) | |
# # inference options | |
# use_io_binding: bool = "${is_gpu:${device}}" | |
# enable_profiling: bool = "${oc.deprecated:backend.session_options.enable_profiling}" | |
# session_options: Dict[str, Any] = field( | |
# default_factory=lambda: {"enable_profiling": "${is_profiling:${benchmark.name}}"} | |
# ) | |
# # optimization options | |
# optimization: bool = False | |
# optimization_config: Dict[str, Any] = field(default_factory=dict) | |
# # quantization options | |
# quantization: bool = False | |
# quantization_config: Dict[str, Any] = field(default_factory=dict) | |
# # calibration options | |
# calibration: bool = False | |
# calibration_config: Dict[str, Any] = field(default_factory=dict) | |
# # null, O1, O2, O3, O4 | |
# auto_optimization: Optional[str] = None | |
# auto_optimization_config: Dict[str, Any] = field(default_factory=dict) | |
# # null, arm64, avx2, avx512, avx512_vnni, tensorrt | |
# auto_quantization: Optional[str] = None | |
# auto_quantization_config: Dict[str, Any] = field(default_factory=dict) | |
# # ort-training is basically a different package so we might need to seperate these two backends in the future | |
# use_inference_session: bool = "${is_inference:${benchmark.name}}" | |
# # training options | |
# use_ddp: bool = False | |
# ddp_config: Dict[str, Any] = field(default_factory=dict) | |
# # peft options | |
# peft_strategy: Optional[str] = None | |
# peft_config: Dict[str, Any] = field(default_factory=dict) | |
def get_openvino_config(): | |
return get_base_backend_config(backend_name="openvino") | |
def get_neural_compressor_config(): | |
return get_base_backend_config(backend_name="neural-compressor") | |
def get_text_generation_inference_config(): | |
return get_base_backend_config(backend_name="text-generation-inference") | |
def get_inference_config(): | |
return [ | |
# duration | |
gr.Textbox( | |
value=10, | |
label="inference.duration", | |
info="Minimum duration of benchmark in seconds", | |
), | |
# warmup runs | |
gr.Textbox( | |
value=10, | |
label="inference.warmup_runs", | |
info="Number of warmup runs before measurements", | |
), | |
# memory | |
gr.Checkbox( | |
value=False, | |
label="inference.memory", | |
info="Measures the peak memory footprint", | |
), | |
# energy | |
gr.Checkbox( | |
value=False, | |
label="inference.energy", | |
info="Measures energy consumption and carbon emissions", | |
), | |
# input_shapes | |
gr.Dataframe( | |
type="array", | |
value=[[2, 16]], | |
row_count=(1, "static"), | |
col_count=(2, "dynamic"), | |
label="inference.input_shapes", | |
headers=["batch_size", "sequence_length"], | |
info="Controllable input shapes, add more columns for more inputs", | |
), | |
# forward kwargs | |
gr.Dataframe( | |
type="array", | |
value=[[False]], | |
headers=["return_dict"], | |
row_count=(1, "static"), | |
col_count=(1, "dynamic"), | |
label="inference.forward_kwargs", | |
info="Keyword arguments for the forward pass, add more columns for more arguments", | |
), | |
] | |
def get_training_config(): | |
return [ | |
# warmup steps | |
gr.Textbox( | |
value=40, | |
label="training.warmup_steps", | |
), | |
# dataset_shapes | |
gr.Dataframe( | |
type="array", | |
value=[[500, 16]], | |
headers=["dataset_size", "sequence_length"], | |
row_count=(1, "static"), | |
col_count=(2, "dynamic"), | |
label="training.dataset_shapes", | |
), | |
# training_arguments | |
gr.Dataframe( | |
value=[[2]], | |
type="array", | |
row_count=(1, "static"), | |
col_count=(1, "dynamic"), | |
label="training.training_arguments", | |
headers=["per_device_train_batch_size"], | |
), | |
] | |