auto-benchmark / app.py
IlyasMoutawwakil's picture
new UI
a6d3fdf
raw
history blame
5.67 kB
import os
import time
from huggingface_hub import create_repo, whoami
import gradio as gr
from config_store import (
get_inference_config,
get_onnxruntime_config,
get_openvino_config,
get_pytorch_config,
get_process_config,
)
from optimum_benchmark.backends.openvino.utils import TASKS_TO_OVMODEL
from optimum_benchmark.backends.transformers_utils import TASKS_TO_MODEL_LOADERS
from optimum_benchmark.backends.onnxruntime.utils import TASKS_TO_ORTMODELS
from optimum_benchmark.backends.ipex.utils import TASKS_TO_IPEXMODEL
from optimum_benchmark import (
BenchmarkConfig,
PyTorchConfig,
OVConfig,
ORTConfig,
IPEXConfig,
ProcessConfig,
InferenceConfig,
Benchmark,
)
from optimum_benchmark.logging_utils import setup_logging
os.environ["LOG_TO_FILE"] = "0"
os.environ["LOG_LEVEL"] = "INFO"
setup_logging(level="INFO", prefix="MAIN-PROCESS")
DEVICE = "cpu"
BACKENDS = ["pytorch", "onnxruntime", "openvino", "ipex"]
CHOSEN_MODELS = ["bert-base-uncased", "gpt2"]
CHOSEN_TASKS = (
set(TASKS_TO_OVMODEL.keys())
& set(TASKS_TO_ORTMODELS.keys())
& set(TASKS_TO_IPEXMODEL.keys())
& set(TASKS_TO_MODEL_LOADERS.keys())
)
def run_benchmark(kwargs, oauth_token: gr.OAuthToken):
if oauth_token.token is None:
return "You must be logged in to use this space"
username = whoami(oauth_token.token)["name"]
create_repo(
f"{username}/benchmarks",
token=oauth_token.token,
repo_type="dataset",
exist_ok=True,
)
configs = {
"process": {},
"inference": {},
"onnxruntime": {},
"openvino": {},
"pytorch": {},
"ipex": {},
}
for key, value in kwargs.items():
if key.label == "model":
model = value
elif key.label == "task":
task = value
elif "." in key.label:
backend, argument = key.label.split(".")
configs[backend][argument] = value
else:
continue
process_config = ProcessConfig(**configs.pop("process"))
inference_config = InferenceConfig(**configs.pop("inference"))
configs["onnxruntime"] = ORTConfig(
task=task,
model=model,
device=DEVICE,
**configs["onnxruntime"],
)
configs["openvino"] = OVConfig(
task=task,
model=model,
device=DEVICE,
**configs["openvino"],
)
configs["pytorch"] = PyTorchConfig(
task=task,
model=model,
device=DEVICE,
**configs["pytorch"],
)
configs["ipex"] = IPEXConfig(
task=task,
model=model,
device=DEVICE,
**configs["ipex"],
)
for backend in configs:
benchmark_name = (
f"{model}-{task}-{backend}-{time.strftime('%Y-%m-%d-%H-%M-%S')}"
)
benchmark_config = BenchmarkConfig(
name=benchmark_name,
launcher=process_config,
scenario=inference_config,
backend=configs[backend],
)
benchmark_report = Benchmark.run(benchmark_config)
benchmark = Benchmark(config=benchmark_config, report=benchmark_report)
benchmark.push_to_hub(
repo_id=f"{username}/benchmarks",
subfolder=benchmark_name,
token=oauth_token.token,
)
return f"πŸš€ Benchmark {benchmark_name} has been pushed to {username}/benchmarks"
with gr.Blocks() as demo:
# add login button
gr.LoginButton(min_width=250)
# add image
gr.Markdown(
"""<img src="https://huggingface.co/spaces/optimum/optimum-benchmark-ui/resolve/main/huggy_bench.png" style="display: block; margin-left: auto; margin-right: auto; width: 30%;">"""
)
# title text
gr.Markdown("<h1 style='text-align: center'>πŸ€— Optimum-Benchmark Interface πŸ‹οΈ</h1>")
# explanation text
gr.HTML(
"<h3 style='text-align: center'>"
"Zero code Gradio interface of "
"<a href='https://github.com/huggingface/optimum-benchmark.git'>"
"Optimum-Benchmark"
"</a>"
"<br>"
"</h3>"
)
model = gr.Dropdown(
label="model",
choices=CHOSEN_MODELS,
value="bert-base-uncased",
info="Model to run the benchmark on.",
)
task = gr.Dropdown(
label="task",
choices=CHOSEN_TASKS,
value="feature-extraction",
info="Task to run the benchmark on.",
)
with gr.Row():
with gr.Accordion(label="Process Config", open=False, visible=True):
process_config = get_process_config()
with gr.Row():
with gr.Accordion(label="PyTorch Config", open=True, visible=True):
pytorch_config = get_pytorch_config()
with gr.Accordion(label="OpenVINO Config", open=True, visible=True):
openvino_config = get_openvino_config()
with gr.Accordion(label="OnnxRuntime Config", open=True, visible=True):
onnxruntime_config = get_onnxruntime_config()
with gr.Row():
with gr.Accordion(label="Scenario Config", open=False, visible=True):
inference_config = get_inference_config()
button = gr.Button(value="Run Benchmark", variant="primary")
html_output = gr.HTML()
button.click(
fn=run_benchmark,
inputs={
task,
model,
*process_config.values(),
*inference_config.values(),
*onnxruntime_config.values(),
*openvino_config.values(),
*pytorch_config.values(),
},
outputs=[html_output],
concurrency_limit=1,
)
demo.queue(max_size=10).launch()