Spaces:
Running
Running
import os | |
import time | |
from huggingface_hub import create_repo, whoami | |
import gradio as gr | |
from config_store import ( | |
get_inference_config, | |
get_onnxruntime_config, | |
get_openvino_config, | |
get_pytorch_config, | |
get_process_config, | |
) | |
from optimum_benchmark.backends.openvino.utils import TASKS_TO_OVMODEL | |
from optimum_benchmark.backends.transformers_utils import TASKS_TO_MODEL_LOADERS | |
from optimum_benchmark.backends.onnxruntime.utils import TASKS_TO_ORTMODELS | |
from optimum_benchmark.backends.ipex.utils import TASKS_TO_IPEXMODEL | |
from optimum_benchmark import ( | |
BenchmarkConfig, | |
PyTorchConfig, | |
OVConfig, | |
ORTConfig, | |
IPEXConfig, | |
ProcessConfig, | |
InferenceConfig, | |
Benchmark, | |
) | |
from optimum_benchmark.logging_utils import setup_logging | |
os.environ["LOG_TO_FILE"] = "0" | |
os.environ["LOG_LEVEL"] = "INFO" | |
setup_logging(level="INFO", prefix="MAIN-PROCESS") | |
DEVICE = "cpu" | |
BACKENDS = ["pytorch", "onnxruntime", "openvino", "ipex"] | |
CHOSEN_MODELS = ["bert-base-uncased", "gpt2"] | |
CHOSEN_TASKS = ( | |
set(TASKS_TO_OVMODEL.keys()) | |
& set(TASKS_TO_ORTMODELS.keys()) | |
& set(TASKS_TO_IPEXMODEL.keys()) | |
& set(TASKS_TO_MODEL_LOADERS.keys()) | |
) | |
def run_benchmark(kwargs, oauth_token: gr.OAuthToken): | |
if oauth_token.token is None: | |
return "You must be logged in to use this space" | |
username = whoami(oauth_token.token)["name"] | |
create_repo( | |
f"{username}/benchmarks", | |
token=oauth_token.token, | |
repo_type="dataset", | |
exist_ok=True, | |
) | |
configs = { | |
"process": {}, | |
"inference": {}, | |
"onnxruntime": {}, | |
"openvino": {}, | |
"pytorch": {}, | |
"ipex": {}, | |
} | |
for key, value in kwargs.items(): | |
if key.label == "model": | |
model = value | |
elif key.label == "task": | |
task = value | |
elif "." in key.label: | |
backend, argument = key.label.split(".") | |
configs[backend][argument] = value | |
else: | |
continue | |
process_config = ProcessConfig(**configs.pop("process")) | |
inference_config = InferenceConfig(**configs.pop("inference")) | |
configs["onnxruntime"] = ORTConfig( | |
task=task, | |
model=model, | |
device=DEVICE, | |
**configs["onnxruntime"], | |
) | |
configs["openvino"] = OVConfig( | |
task=task, | |
model=model, | |
device=DEVICE, | |
**configs["openvino"], | |
) | |
configs["pytorch"] = PyTorchConfig( | |
task=task, | |
model=model, | |
device=DEVICE, | |
**configs["pytorch"], | |
) | |
configs["ipex"] = IPEXConfig( | |
task=task, | |
model=model, | |
device=DEVICE, | |
**configs["ipex"], | |
) | |
for backend in configs: | |
benchmark_name = ( | |
f"{model}-{task}-{backend}-{time.strftime('%Y-%m-%d-%H-%M-%S')}" | |
) | |
benchmark_config = BenchmarkConfig( | |
name=benchmark_name, | |
launcher=process_config, | |
scenario=inference_config, | |
backend=configs[backend], | |
) | |
benchmark_report = Benchmark.run(benchmark_config) | |
benchmark = Benchmark(config=benchmark_config, report=benchmark_report) | |
benchmark.push_to_hub( | |
repo_id=f"{username}/benchmarks", | |
subfolder=benchmark_name, | |
token=oauth_token.token, | |
) | |
return f"π Benchmark {benchmark_name} has been pushed to {username}/benchmarks" | |
with gr.Blocks() as demo: | |
# add login button | |
gr.LoginButton(min_width=250) | |
# add image | |
gr.Markdown( | |
"""<img src="https://huggingface.co/spaces/optimum/optimum-benchmark-ui/resolve/main/huggy_bench.png" style="display: block; margin-left: auto; margin-right: auto; width: 30%;">""" | |
) | |
# title text | |
gr.Markdown("<h1 style='text-align: center'>π€ Optimum-Benchmark Interface ποΈ</h1>") | |
# explanation text | |
gr.HTML( | |
"<h3 style='text-align: center'>" | |
"Zero code Gradio interface of " | |
"<a href='https://github.com/huggingface/optimum-benchmark.git'>" | |
"Optimum-Benchmark" | |
"</a>" | |
"<br>" | |
"</h3>" | |
) | |
model = gr.Dropdown( | |
label="model", | |
choices=CHOSEN_MODELS, | |
value="bert-base-uncased", | |
info="Model to run the benchmark on.", | |
) | |
task = gr.Dropdown( | |
label="task", | |
choices=CHOSEN_TASKS, | |
value="feature-extraction", | |
info="Task to run the benchmark on.", | |
) | |
with gr.Row(): | |
with gr.Accordion(label="Process Config", open=False, visible=True): | |
process_config = get_process_config() | |
with gr.Row(): | |
with gr.Accordion(label="PyTorch Config", open=True, visible=True): | |
pytorch_config = get_pytorch_config() | |
with gr.Accordion(label="OpenVINO Config", open=True, visible=True): | |
openvino_config = get_openvino_config() | |
with gr.Accordion(label="OnnxRuntime Config", open=True, visible=True): | |
onnxruntime_config = get_onnxruntime_config() | |
with gr.Row(): | |
with gr.Accordion(label="Scenario Config", open=False, visible=True): | |
inference_config = get_inference_config() | |
button = gr.Button(value="Run Benchmark", variant="primary") | |
html_output = gr.HTML() | |
button.click( | |
fn=run_benchmark, | |
inputs={ | |
task, | |
model, | |
*process_config.values(), | |
*inference_config.values(), | |
*onnxruntime_config.values(), | |
*openvino_config.values(), | |
*pytorch_config.values(), | |
}, | |
outputs=[html_output], | |
concurrency_limit=1, | |
) | |
demo.queue(max_size=10).launch() | |