Spaces:
Running
Running
Commit
β’
eabde51
1
Parent(s):
a533468
remove tgi
Browse files- app.py +3 -6
- config_store.py +204 -60
app.py
CHANGED
@@ -8,14 +8,13 @@ from run import run_benchmark
|
|
8 |
from config_store import (
|
9 |
get_training_config,
|
10 |
get_inference_config,
|
11 |
-
get_text_generation_inference_config,
|
12 |
get_neural_compressor_config,
|
13 |
get_onnxruntime_config,
|
14 |
get_openvino_config,
|
15 |
get_pytorch_config,
|
16 |
)
|
17 |
|
18 |
-
BACKENDS = ["pytorch", "onnxruntime", "openvino", "neural-compressor"
|
19 |
BENCHMARKS = ["inference", "training"]
|
20 |
DEVICES = ["cpu", "cuda"]
|
21 |
|
@@ -25,14 +24,14 @@ with gr.Blocks() as demo:
|
|
25 |
gr.HTML("<h1 style='text-align: center'>π€ Optimum-Benchmark UI ποΈ</h1>")
|
26 |
# explanation text
|
27 |
gr.Markdown(
|
28 |
-
"This is a demo space of [
|
29 |
"<br>A unified multi-backend utility for benchmarking `transformers`, `diffusers`, `peft` and `timm` models with "
|
30 |
"Optimum's optimizations & quantization, for inference & training, on different backends & hardwares."
|
31 |
)
|
32 |
|
33 |
model = gr.Textbox(
|
34 |
label="model",
|
35 |
-
value="
|
36 |
info="Model to run the benchmark on. In the particular case of this space, only models that are hosted on huggingface.co/models can be benchmarked.",
|
37 |
)
|
38 |
task = gr.Dropdown(
|
@@ -73,8 +72,6 @@ with gr.Blocks() as demo:
|
|
73 |
openvino_config = get_openvino_config()
|
74 |
with gr.Accordion(label="Neural Compressor Config", open=False, visible=False):
|
75 |
neural_compressor_config = get_neural_compressor_config()
|
76 |
-
with gr.Accordion(label="Text Generation Inference Config", open=False, visible=False):
|
77 |
-
text_generation_inference_config = get_text_generation_inference_config()
|
78 |
|
79 |
# hide backend configs based on backend
|
80 |
backend.change(
|
|
|
8 |
from config_store import (
|
9 |
get_training_config,
|
10 |
get_inference_config,
|
|
|
11 |
get_neural_compressor_config,
|
12 |
get_onnxruntime_config,
|
13 |
get_openvino_config,
|
14 |
get_pytorch_config,
|
15 |
)
|
16 |
|
17 |
+
BACKENDS = ["pytorch", "onnxruntime", "openvino", "neural-compressor"]
|
18 |
BENCHMARKS = ["inference", "training"]
|
19 |
DEVICES = ["cpu", "cuda"]
|
20 |
|
|
|
24 |
gr.HTML("<h1 style='text-align: center'>π€ Optimum-Benchmark UI ποΈ</h1>")
|
25 |
# explanation text
|
26 |
gr.Markdown(
|
27 |
+
"This is a demo space of [`optimum-Benchmark`](https://github.com/huggingface/optimum-benchmark.git):"
|
28 |
"<br>A unified multi-backend utility for benchmarking `transformers`, `diffusers`, `peft` and `timm` models with "
|
29 |
"Optimum's optimizations & quantization, for inference & training, on different backends & hardwares."
|
30 |
)
|
31 |
|
32 |
model = gr.Textbox(
|
33 |
label="model",
|
34 |
+
value="optimum/distilbert-base-uncased-finetuned-sst-2-english",
|
35 |
info="Model to run the benchmark on. In the particular case of this space, only models that are hosted on huggingface.co/models can be benchmarked.",
|
36 |
)
|
37 |
task = gr.Dropdown(
|
|
|
72 |
openvino_config = get_openvino_config()
|
73 |
with gr.Accordion(label="Neural Compressor Config", open=False, visible=False):
|
74 |
neural_compressor_config = get_neural_compressor_config()
|
|
|
|
|
75 |
|
76 |
# hide backend configs based on backend
|
77 |
backend.change(
|
config_store.py
CHANGED
@@ -105,79 +105,223 @@ def get_pytorch_config():
|
|
105 |
# info="Uses DistributedDataParallel for multi-gpu training",
|
106 |
# ),
|
107 |
# peft_strategy
|
108 |
-
gr.
|
109 |
value="null",
|
|
|
110 |
label="pytorch.peft_strategy",
|
|
|
111 |
),
|
112 |
]
|
113 |
|
114 |
|
115 |
def get_onnxruntime_config():
|
116 |
-
return get_base_backend_config(backend_name="onnxruntime")
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
|
171 |
def get_openvino_config():
|
172 |
-
return get_base_backend_config(backend_name="openvino")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
|
175 |
def get_neural_compressor_config():
|
176 |
-
return get_base_backend_config(backend_name="neural-compressor")
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
|
183 |
def get_inference_config():
|
|
|
105 |
# info="Uses DistributedDataParallel for multi-gpu training",
|
106 |
# ),
|
107 |
# peft_strategy
|
108 |
+
gr.Dropdown(
|
109 |
value="null",
|
110 |
+
choices=["null", "lora", "ada_lora", "prompt_tuning", "prefix_tuning", "p_tuning", "ia3"],
|
111 |
label="pytorch.peft_strategy",
|
112 |
+
info="Use null for no PEFT",
|
113 |
),
|
114 |
]
|
115 |
|
116 |
|
117 |
def get_onnxruntime_config():
|
118 |
+
return get_base_backend_config(backend_name="onnxruntime") + [
|
119 |
+
# no_weights
|
120 |
+
gr.Checkbox(
|
121 |
+
value=False,
|
122 |
+
label="pytorch.no_weights",
|
123 |
+
info="Generates random weights instead of downloading pretrained ones",
|
124 |
+
),
|
125 |
+
# export
|
126 |
+
gr.Checkbox(
|
127 |
+
value=True,
|
128 |
+
label="onnxruntime.export",
|
129 |
+
info="Exports the model to ONNX",
|
130 |
+
),
|
131 |
+
# use_cache
|
132 |
+
gr.Checkbox(
|
133 |
+
value=True,
|
134 |
+
label="onnxruntime.use_cache",
|
135 |
+
info="Uses cached ONNX model if available",
|
136 |
+
),
|
137 |
+
# use_merged
|
138 |
+
gr.Checkbox(
|
139 |
+
value=False,
|
140 |
+
label="onnxruntime.use_merged",
|
141 |
+
info="Uses merged ONNX model if available",
|
142 |
+
),
|
143 |
+
# torch_dtype
|
144 |
+
gr.Dropdown(
|
145 |
+
value="null",
|
146 |
+
label="onnxruntime.torch_dtype",
|
147 |
+
choices=["null", "bfloat16", "float16", "float32", "auto"],
|
148 |
+
info="Use null for default and `auto` for automatic dtype selection",
|
149 |
+
),
|
150 |
+
# use_io_binding
|
151 |
+
gr.Checkbox(
|
152 |
+
value=True,
|
153 |
+
label="onnxruntime.use_io_binding",
|
154 |
+
info="Uses IO binding for inference",
|
155 |
+
),
|
156 |
+
# auto_optimization
|
157 |
+
gr.Dropdown(
|
158 |
+
value="null",
|
159 |
+
label="onnxruntime.auto_optimization",
|
160 |
+
choices=["null", "O1", "O2", "O3", "O4"],
|
161 |
+
info="Use null for default",
|
162 |
+
),
|
163 |
+
# auto_quantization
|
164 |
+
gr.Dropdown(
|
165 |
+
value="null",
|
166 |
+
label="onnxruntime.auto_quantization",
|
167 |
+
choices=["null", "arm64", "avx2", "avx512", "avx512_vnni", "tensorrt"],
|
168 |
+
info="Use null for default",
|
169 |
+
),
|
170 |
+
# optimization
|
171 |
+
gr.Checkbox(
|
172 |
+
value=False,
|
173 |
+
label="onnxruntime.optimization",
|
174 |
+
info="Enables manual optimization",
|
175 |
+
),
|
176 |
+
# optimization_config
|
177 |
+
gr.Dataframe(
|
178 |
+
type="array",
|
179 |
+
value=[["optimization_level"]],
|
180 |
+
headers=["1"],
|
181 |
+
row_count=(1, "static"),
|
182 |
+
col_count=(1, "dynamic"),
|
183 |
+
label="onnxruntime.optimization_config",
|
184 |
+
),
|
185 |
+
# quantization
|
186 |
+
gr.Checkbox(
|
187 |
+
value=False,
|
188 |
+
label="onnxruntime.quantization",
|
189 |
+
info="Enables manual quantization",
|
190 |
+
),
|
191 |
+
# quantization_config
|
192 |
+
gr.Dataframe(
|
193 |
+
type="array",
|
194 |
+
value=[["is_static"]],
|
195 |
+
headers=[False],
|
196 |
+
row_count=(1, "static"),
|
197 |
+
col_count=(1, "dynamic"),
|
198 |
+
label="onnxruntime.quantization_config",
|
199 |
+
info="Use null for default",
|
200 |
+
),
|
201 |
+
# calibration
|
202 |
+
gr.Checkbox(
|
203 |
+
value=False,
|
204 |
+
label="onnxruntime.calibration",
|
205 |
+
info="Enables calibration",
|
206 |
+
),
|
207 |
+
# calibration_config
|
208 |
+
gr.Dataframe(
|
209 |
+
type="array",
|
210 |
+
value=[["glue"]],
|
211 |
+
headers=["dataset_name"],
|
212 |
+
row_count=(1, "static"),
|
213 |
+
col_count=(1, "dynamic"),
|
214 |
+
label="onnxruntime.calibration_config",
|
215 |
+
info="Use null for default",
|
216 |
+
),
|
217 |
+
# peft_strategy
|
218 |
+
gr.Dropdown(
|
219 |
+
value="null",
|
220 |
+
label="onnxruntime.peft_strategy",
|
221 |
+
choices=["null", "lora", "ada_lora", "prompt_tuning", "prefix_tuning", "p_tuning", "ia3"],
|
222 |
+
info="Use null for full parameters fine-tuning",
|
223 |
+
),
|
224 |
+
]
|
225 |
|
226 |
|
227 |
def get_openvino_config():
|
228 |
+
return get_base_backend_config(backend_name="openvino") + [
|
229 |
+
# export
|
230 |
+
gr.Checkbox(
|
231 |
+
value=True,
|
232 |
+
label="openvino.export",
|
233 |
+
info="Exports the model to ONNX",
|
234 |
+
),
|
235 |
+
# use_cache
|
236 |
+
gr.Checkbox(
|
237 |
+
value=True,
|
238 |
+
label="openvino.use_cache",
|
239 |
+
info="Uses cached ONNX model if available",
|
240 |
+
),
|
241 |
+
# use_merged
|
242 |
+
gr.Checkbox(
|
243 |
+
value=False,
|
244 |
+
label="openvino.use_merged",
|
245 |
+
info="Uses merged ONNX model if available",
|
246 |
+
),
|
247 |
+
# reshape
|
248 |
+
gr.Checkbox(
|
249 |
+
value=False,
|
250 |
+
label="openvino.reshape",
|
251 |
+
info="Reshapes the model to the input shape",
|
252 |
+
),
|
253 |
+
# half
|
254 |
+
gr.Checkbox(
|
255 |
+
value=False,
|
256 |
+
label="openvino.half",
|
257 |
+
info="Converts model to half precision",
|
258 |
+
),
|
259 |
+
# quantization
|
260 |
+
gr.Checkbox(
|
261 |
+
value=False,
|
262 |
+
label="openvino.quantization",
|
263 |
+
info="Enables quantization",
|
264 |
+
),
|
265 |
+
# quantization_config
|
266 |
+
gr.Dataframe(
|
267 |
+
type="array",
|
268 |
+
headers=["compression", "input_info", "save_onnx_model"],
|
269 |
+
value=[[None, None, None]],
|
270 |
+
row_count=(1, "static"),
|
271 |
+
col_count=(3, "dynamic"),
|
272 |
+
label="openvino.quantization_config",
|
273 |
+
),
|
274 |
+
# calibration
|
275 |
+
gr.Checkbox(
|
276 |
+
value=False,
|
277 |
+
label="openvino.calibration",
|
278 |
+
info="Enables calibration",
|
279 |
+
),
|
280 |
+
# calibration_config
|
281 |
+
gr.Dataframe(
|
282 |
+
type="array",
|
283 |
+
headers=["dataset_name"],
|
284 |
+
value=[["glue"]],
|
285 |
+
row_count=(1, "static"),
|
286 |
+
col_count=(1, "dynamic"),
|
287 |
+
label="openvino.calibration_config",
|
288 |
+
),
|
289 |
+
]
|
290 |
|
291 |
|
292 |
def get_neural_compressor_config():
|
293 |
+
return get_base_backend_config(backend_name="neural-compressor") + [
|
294 |
+
# ptq_quantization
|
295 |
+
gr.Checkbox(
|
296 |
+
value=False,
|
297 |
+
label="neural-compressor.ptq_quantization",
|
298 |
+
info="Enables post-training quantization",
|
299 |
+
),
|
300 |
+
# ptq_quantization_config
|
301 |
+
gr.Dataframe(
|
302 |
+
type="array",
|
303 |
+
headers=["device"],
|
304 |
+
value=[["cpu"]],
|
305 |
+
row_count=(1, "static"),
|
306 |
+
col_count=(1, "dynamic"),
|
307 |
+
label="neural-compressor.ptq_quantization_config",
|
308 |
+
),
|
309 |
+
# calibration
|
310 |
+
gr.Checkbox(
|
311 |
+
value=False,
|
312 |
+
label="neural-compressor.calibration",
|
313 |
+
info="Enables calibration",
|
314 |
+
),
|
315 |
+
# calibration_config
|
316 |
+
gr.Dataframe(
|
317 |
+
type="array",
|
318 |
+
headers=["dataset_name"],
|
319 |
+
value=[["glue"]],
|
320 |
+
row_count=(1, "static"),
|
321 |
+
col_count=(1, "dynamic"),
|
322 |
+
label="neural-compressor.calibration_config",
|
323 |
+
),
|
324 |
+
]
|
325 |
|
326 |
|
327 |
def get_inference_config():
|