File size: 4,961 Bytes
c8763bd
 
 
 
 
9dc4521
8e785e9
d262fb3
c8763bd
 
 
d262fb3
708b21b
c8763bd
dcfabfb
 
 
 
 
 
 
2773294
6640b32
efc3d5b
 
d262fb3
c8763bd
 
a18f8de
e2c5bda
 
 
efc3d5b
00642fb
 
efc3d5b
6064b14
efc3d5b
708b21b
efc3d5b
00642fb
efc3d5b
 
c8763bd
d8b9ce2
c8763bd
 
8e785e9
 
 
 
 
d262fb3
c8763bd
 
 
 
 
8e785e9
 
 
 
 
 
 
 
c8763bd
708b21b
 
 
a0b186b
 
 
708b21b
 
 
a18f8de
708b21b
8e785e9
 
708b21b
a18f8de
708b21b
 
a18f8de
8e785e9
 
 
 
 
 
 
 
 
 
 
 
 
a18f8de
8e785e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
708b21b
9dc4521
00642fb
 
 
 
 
 
d262fb3
 
c8763bd
5aacd58
 
c8763bd
d262fb3
 
c8763bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler

from src.assets.text_content import TITLE, INTRODUCTION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT
from src.assets.css_html_js import custom_css
from src.utils import restart_space, load_dataset_repo, make_clickable_model


LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None)

COLUMNS_MAPPING = {
    "model": "Model πŸ€—",
    "backend.name": "Backend 🏭",
    "backend.torch_dtype": "Load Datatype πŸ“₯",
    "generate.latency(s)": "Latency (s) ⬇️",
    "generate.throughput(tokens/s)": "Throughput (tokens/s) ⬆️",
}
COLUMNS_DATATYPES = ["markdown", "str", "str", "number", "number"]
SORTING_COLUMN = ["Throughput (tokens/s) ⬆️"]


llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)


def get_benchmark_df(benchmark):
    if llm_perf_dataset_repo:
        llm_perf_dataset_repo.git_pull()

    # load
    df = pd.read_csv(
        f"./llm-perf-dataset/reports/{benchmark}/inference_report.csv")
    # preprocess
    df["model"] = df["model"].apply(make_clickable_model)
    # filter
    df = df[list(COLUMNS_MAPPING.keys())]
    # rename
    df.rename(columns=COLUMNS_MAPPING, inplace=True)
    # sort
    df.sort_values(by=SORTING_COLUMN, ascending=False, inplace=True)

    return df


def search_table(df, query):
    filtered_df = df[df["model"].str.contains(query, case=False)]
    return filtered_df


# Define demo interface
demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Row():
        with gr.Box(elem_id="search-bar-table-box"):
            search_bar = gr.Textbox(
                placeholder="πŸ” Search your model and press ENTER...",
                show_label=False,
                elem_id="search-bar",
            )

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ–₯️ A100-80GB Benchmark πŸ‹οΈ", elem_id="A100-benchmark", id=0):

            SINGLE_A100_TEXT = """<h3>Single-GPU (1xA100):</h3>
            <ul>
                <li>Singleton Batch (1)</li>
                <li>Thousand Tokens (1000)</li>
            </ul>
            """
            gr.HTML(SINGLE_A100_TEXT)

            single_A100_df = get_benchmark_df(benchmark="1xA100-80GB")
            # Original leaderboard table
            single_A100_leaderboard = gr.components.Dataframe(
                value=single_A100_df,
                datatype=COLUMNS_DATATYPES,
                headers=list(COLUMNS_MAPPING.values()),
                elem_id="1xA100-table",
            )
            # Dummy Leaderboard table for handling the case when the user uses backspace key
            single_A100_for_search = gr.components.Dataframe(
                value=single_A100_df,
                datatype=COLUMNS_DATATYPES,
                headers=list(COLUMNS_MAPPING.values()),
                max_rows=None,
                visible=False,
            )
            search_bar.submit(
                search_table,
                [single_A100_for_search, search_bar],
                single_A100_leaderboard,
            )

            MULTI_A100_TEXT = """<h3>Multi-GPU (4xA100):</h3>
            <ul>
                <li>Singleton Batch (1)</li>
                <li>Thousand Tokens (1000)</li>
            </ul>"""
            gr.HTML(MULTI_A100_TEXT)
            multi_A100_df = get_benchmark_df(benchmark="4xA100-80GB")
            multi_A100_leaderboard = gr.components.Dataframe(
                value=multi_A100_df,
                datatype=COLUMNS_DATATYPES,
                headers=list(COLUMNS_MAPPING.values()),
                elem_id="4xA100-table",
            )
            # Dummy Leaderboard table for handling the case when the user uses backspace key
            multi_A100_for_search = gr.components.Dataframe(
                value=single_A100_df,
                datatype=COLUMNS_DATATYPES,
                headers=list(COLUMNS_MAPPING.values()),
                max_rows=None,
                visible=False,
            )
            search_bar.submit(
                search_table,
                [multi_A100_for_search, search_bar],
                multi_A100_leaderboard,
            )

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                elem_id="citation-button",
            ).style(show_copy_button=True)

# Restart space every hour
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600,
                  args=[LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN])
scheduler.start()

# Launch demo
demo.queue(concurrency_count=40).launch()