File size: 3,481 Bytes
c8763bd
 
 
 
 
9dc4521
d8b9ce2
d262fb3
c8763bd
 
 
d262fb3
 
c8763bd
dcfabfb
 
 
 
 
 
 
2773294
6640b32
efc3d5b
 
d262fb3
c8763bd
 
a18f8de
d262fb3
 
c8763bd
efc3d5b
00642fb
 
efc3d5b
6064b14
efc3d5b
dcfabfb
efc3d5b
00642fb
efc3d5b
 
c8763bd
d8b9ce2
c8763bd
 
d262fb3
c8763bd
 
 
 
 
 
a18f8de
 
d912876
a0b186b
 
 
 
 
a18f8de
 
 
c8763bd
a18f8de
 
dcfabfb
a18f8de
 
 
92b7d66
 
 
 
 
 
 
 
 
 
 
 
 
 
c8763bd
9dc4521
00642fb
 
 
 
 
 
d262fb3
 
c8763bd
5aacd58
 
c8763bd
d262fb3
 
c8763bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import os
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler

from src.assets.text_content import TITLE, INTRODUCTION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT
from src.assets.css_html_js import custom_css, get_window_url_params
from src.utils import restart_space, load_dataset_repo, make_clickable_model


LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN")

COLUMNS_MAPPING = {
    "model": "Model πŸ€—",
    "backend.name": "Backend 🏭",
    "backend.torch_dtype": "Load Datatype πŸ“₯",
    "generate.latency(s)": "Latency (s) ⬇️",
    "generate.throughput(tokens/s)": "Throughput (tokens/s) ⬆️",
}
COLUMNS_DATATYPES = ["markdown", "str", "str", "number", "number"]
SORTING_COLUMN = ["Throughput (tokens/s) ⬆️"]


llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)


def get_benchmark_df(benchmark):
    if llm_perf_dataset_repo:
        llm_perf_dataset_repo.git_pull()

    # load
    df = pd.read_csv(
        f"./llm-perf-dataset/reports/{benchmark}/inference_report.csv")
    # preprocess
    df["model"] = df["model"].apply(make_clickable_model)
    # filter
    df = df[COLUMNS_MAPPING.keys()]
    # rename
    df.rename(columns=COLUMNS_MAPPING, inplace=True)
    # sort
    df.sort_values(by=SORTING_COLUMN, ascending=False, inplace=True)

    return df


# Define demo interface
demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ–₯️ A100-80GB Benchmark πŸ‹οΈ", elem_id="A100-benchmark", id=0):

            SINGLE_A100_TEXT = """<h3>Single-GPU (1xA100):</h3>
            <ul>
                <li>Singleton Batch (1)</li>
                <li>Thousand Tokens (1000)</li>
            </ul>
            """
            gr.HTML(SINGLE_A100_TEXT)

            single_A100_df = get_benchmark_df(benchmark="1xA100-80GB")
            leaderboard_table_lite = gr.components.Dataframe(
                value=single_A100_df,
                datatype=COLUMNS_DATATYPES,
                headers=COLUMNS_MAPPING.values(),
                elem_id="1xA100-table",
            )

            # MULTI_A100_TEXT = """<h3>Multi-GPU (4xA100):</h3>
            # <ul>
            #     <li>Singleton Batch (1)</li>
            #     <li>Thousand Tokens (1000)</li>
            # </ul>"""
            # gr.HTML(MULTI_A100_TEXT)

            # multi_A100_df = get_benchmark_df(benchmark="4xA100-80GB")
            # leaderboard_table_full = gr.components.Dataframe(
            #     value=multi_A100_df,
            #     datatype=COLUMNS_DATATYPES,
            #     headers=COLUMNS_MAPPING.values(),
            #     elem_id="4xA100-table",
            # )

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                elem_id="citation-button",
            ).style(show_copy_button=True)

# Restart space every hour
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600,
                  args=[LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN])
scheduler.start()

# Launch demo
demo.queue(concurrency_count=40).launch()