File size: 4,460 Bytes
ab5f5f1
e47d0b2
ab5f5f1
 
 
e47d0b2
 
76b423c
ab5f5f1
8e30a31
 
ab5f5f1
76b423c
 
ab5f5f1
76b423c
 
 
 
 
a1f6c2e
76b423c
 
a1f6c2e
76b423c
 
 
 
 
 
 
ab5f5f1
76b423c
ab5f5f1
 
 
e47d0b2
76b423c
e47d0b2
76b423c
 
 
7ecfa5a
76b423c
 
 
 
ab5f5f1
7ecfa5a
 
 
76b423c
ab5f5f1
76b423c
7ecfa5a
ab5f5f1
 
76b423c
ab5f5f1
 
76b423c
ab5f5f1
76b423c
 
 
 
 
5345cba
76b423c
 
ab5f5f1
76b423c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0232cf1
ab5f5f1
 
 
 
 
 
 
 
 
 
 
 
76b423c
 
e47d0b2
8e30a31
 
 
 
 
76b423c
e47d0b2
76b423c
8e30a31
76b423c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
from typing import List

import pandas as pd

from src.hardware import HardwareConfig

from .utils import process_kernels, process_quantizations

DATASET_DIRECTORY = "dataset"

COLUMNS_MAPPING = {
    "config.name": "Experiment πŸ§ͺ",
    "config.backend.model": "Model πŸ€—",
    # primary measurements
    "report.prefill.latency.p50": "Prefill (s)",
    "report.per_token.latency.p50": "Per Token (s)",
    "report.decode.throughput.value": "Decode (tokens/s)",
    "report.decode.efficiency.value": "Energy (tokens/kWh)",
    "report.decode.memory.max_allocated": "Memory (MB)",
    # deployment settings
    "config.backend.name": "Backend 🏭",
    "config.backend.torch_dtype": "Precision πŸ“₯",
    "quantization": "Quantization πŸ—œοΈ",
    "attention": "Attention πŸ‘οΈ",
    "kernel": "Kernel βš›οΈ",
    # additional information
    "architecture": "Architecture πŸ›οΈ",
    "prefill+decode": "End-to-End (s)",
    "Average ⬆️": "Open LLM Score (%)",
    "#Params (B)": "Params (B)",
}
SORTING_COLUMNS = ["Open LLM Score (%)", "Decode (tokens/s)", "Prefill (s)"]
SORTING_ASCENDING = [False, True, False]


def get_raw_llm_perf_df(machine: str, subsets: List[str]):
    dfs = []
    for subset in subsets:
        try:
            dfs.append(
                pd.read_csv(
                    f"hf://datasets/optimum-benchmark/llm-perf-leaderboard/perf-df-{subset}-{machine}.csv"
                )
            )
        except Exception:
            print(f"Subset {subset} for machine {machine} not found")

    perf_df = pd.concat(dfs)
    llm_df = pd.read_csv(
        "hf://datasets/optimum-benchmark/llm-perf-leaderboard/llm-df.csv"
    )

    llm_perf_df = pd.merge(
        llm_df, perf_df, left_on="Model", right_on="config.backend.model"
    )

    return llm_perf_df


def processed_llm_perf_df(llm_perf_df):
    # some assertions
    assert llm_perf_df["config.scenario.input_shapes.batch_size"].nunique() == 1
    assert llm_perf_df["config.scenario.input_shapes.sequence_length"].nunique() == 1
    assert llm_perf_df["config.scenario.generate_kwargs.max_new_tokens"].nunique() == 1
    assert llm_perf_df["config.scenario.generate_kwargs.min_new_tokens"].nunique() == 1
    # fix couple stuff
    llm_perf_df.dropna(subset=["report.decode.latency.p50"], inplace=True)
    llm_perf_df["config.name"] = llm_perf_df["config.name"].str.replace(
        "flash_attention_2", "fa2"
    )
    llm_perf_df["prefill+decode"] = (
        llm_perf_df["report.prefill.latency.p50"]
        + (llm_perf_df["report.decode.latency.p50"])
    )
    # llm_perf_df["architecture"] = llm_perf_df["config.backend.model"].apply(
    #     process_architectures
    # )
    llm_perf_df["architecture"] = llm_perf_df["Architecture"]
    llm_perf_df["attention"] = (
        llm_perf_df["config.backend.attn_implementation"]
        .str.replace("flash_attention_2", "FAv2")
        .str.replace("eager", "Eager")
        .str.replace("sdpa", "SDPA")
    )
    llm_perf_df["quantization"] = llm_perf_df.apply(process_quantizations, axis=1)
    llm_perf_df["kernel"] = llm_perf_df.apply(process_kernels, axis=1)
    # round numerical columns
    llm_perf_df = llm_perf_df.round(
        {
            "report.prefill.latency.p50": 3,
            "report.decode.latency.p50": 3,
            "report.decode.throughput.value": 3,
            "report.decode.efficiency.value": 3,
            "report.decode.memory.max_allocated": 3,
            "Average ⬆️": 3,
            "prefill+decode": 3,
            "#Params (B)": 3,
        }
    )
    # filter columns
    llm_perf_df = llm_perf_df[list(COLUMNS_MAPPING.keys())]
    # rename columns
    llm_perf_df.rename(columns=COLUMNS_MAPPING, inplace=True)
    # sort by metric
    llm_perf_df.sort_values(
        by=SORTING_COLUMNS,
        ascending=SORTING_ASCENDING,
        inplace=True,
    )

    return llm_perf_df


def get_llm_perf_df(machine: str, subsets: List[str]):
    if not os.path.exists(DATASET_DIRECTORY):
        os.makedirs(DATASET_DIRECTORY)

    if os.path.exists(f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv"):
        llm_perf_df = pd.read_csv(f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv")
    else:
        llm_perf_df = get_raw_llm_perf_df(machine, subsets)
        llm_perf_df = processed_llm_perf_df(llm_perf_df)
        llm_perf_df.to_csv(f"{DATASET_DIRECTORY}/llm-perf-leaderboard-{machine}.csv", index=False)

    return llm_perf_df