Spaces:
Running
Running
import os | |
import json | |
import gradio as gr | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from src.assets.text_content import TITLE, INTRODUCTION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT | |
from src.utils import restart_space, load_dataset_repo, make_clickable_model | |
from src.assets.css_html_js import custom_css, get_window_url_params | |
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard" | |
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset" | |
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None) | |
COLUMNS_MAPPING = { | |
"model": "Model π€", | |
"backend.name": "Backend π", | |
"backend.torch_dtype": "Datatype π₯", | |
"generate.latency(s)": "Latency (s) β¬οΈ", | |
"generate.throughput(tokens/s)": "Throughput (tokens/s) β¬οΈ", | |
} | |
COLUMNS_DATATYPES = ["markdown", "str", "str", "number", "number"] | |
SORTING_COLUMN = ["Throughput (tokens/s) β¬οΈ"] | |
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN) | |
def get_benchmark_df(benchmark): | |
if llm_perf_dataset_repo: | |
llm_perf_dataset_repo.git_pull() | |
# load | |
df = pd.read_csv( | |
f"./llm-perf-dataset/reports/{benchmark}/inference_report.csv") | |
# preprocess | |
df["model"] = df["model"].apply(make_clickable_model) | |
# filter | |
df = df[list(COLUMNS_MAPPING.keys())] | |
# rename | |
df.rename(columns=COLUMNS_MAPPING, inplace=True) | |
# sort | |
df.sort_values(by=SORTING_COLUMN, ascending=False, inplace=True) | |
return df | |
def change_tab(query_param): | |
query_param = query_param.replace("'", '"') | |
query_param = json.loads(query_param) | |
if ( | |
isinstance(query_param, dict) | |
and "tab" in query_param | |
and query_param["tab"] == "evaluation" | |
): | |
return gr.Tabs.update(selected=1) | |
else: | |
return gr.Tabs.update(selected=0) | |
def search_tables(single_df, multi_df, query): | |
filtered_single = single_df[single_df["Model π€"].str.contains(query)] | |
filtered_multi = multi_df[multi_df["Model π€"].str.contains(query)] | |
return filtered_single, filtered_multi | |
def filter_tables(single_df, multi_df, backends, datatypes): | |
filtered_single = single_df[single_df["Backend π"].isin(backends)] | |
filtered_single = filtered_single[filtered_single["Datatype π₯"].isin( | |
datatypes)] | |
filtered_multi = multi_df[multi_df["Backend π"].isin(backends)] | |
filtered_multi = filtered_multi[filtered_multi["Datatype π₯"].isin( | |
datatypes)] | |
return filtered_single, filtered_multi | |
# Define demo interface | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Box(elem_id="search-bar-table-box"): | |
search_bar = gr.Textbox( | |
label="Search π", | |
info="Search for a model", | |
placeholder="Write and press ENTER...", | |
elem_id="search-bar", | |
) | |
backend_checkboxes = gr.CheckboxGroup( | |
choices=["pytorch", "onnxruntime"], | |
value=["pytorch"], | |
label="Backends π", | |
info="Select the backends", | |
elem_id="backend-checkboxes", | |
) | |
datatype_checkboxes = gr.CheckboxGroup( | |
choices=["float32", "float16"], | |
value=["float16"], | |
label="Datatypes π₯", | |
info="Select the load datatypes", | |
elem_id="datatype-checkboxes", | |
) | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π₯οΈ A100-80GB Benchmark ποΈ", elem_id="A100-benchmark", id=0): | |
SINGLE_A100_TEXT = """<h3>Single-GPU (1xA100):</h3> | |
<ul> | |
<li>Singleton Batch (1)</li> | |
<li>Thousand Tokens (1000)</li> | |
</ul> | |
""" | |
gr.HTML(SINGLE_A100_TEXT) | |
single_A100_df = get_benchmark_df(benchmark="1xA100-80GB") | |
# Original leaderboard table | |
single_A100_leaderboard = gr.components.Dataframe( | |
value=single_A100_df, | |
datatype=COLUMNS_DATATYPES, | |
headers=list(COLUMNS_MAPPING.values()), | |
elem_id="1xA100-table", | |
) | |
# Dummy Leaderboard table for handling the case when the user uses backspace key | |
single_A100_for_search = gr.components.Dataframe( | |
value=single_A100_df, | |
datatype=COLUMNS_DATATYPES, | |
headers=list(COLUMNS_MAPPING.values()), | |
max_rows=None, | |
visible=False, | |
) | |
MULTI_A100_TEXT = """<h3>Multi-GPU (4xA100):</h3> | |
<ul> | |
<li>Singleton Batch (1)</li> | |
<li>Thousand Tokens (1000)</li> | |
</ul>""" | |
gr.HTML(MULTI_A100_TEXT) | |
multi_A100_df = get_benchmark_df(benchmark="4xA100-80GB") | |
multi_A100_leaderboard = gr.components.Dataframe( | |
value=multi_A100_df, | |
datatype=COLUMNS_DATATYPES, | |
headers=list(COLUMNS_MAPPING.values()), | |
elem_id="4xA100-table", | |
) | |
# Dummy Leaderboard table for handling the case when the user uses backspace key | |
multi_A100_for_search = gr.components.Dataframe( | |
value=multi_A100_df, | |
datatype=COLUMNS_DATATYPES, | |
headers=list(COLUMNS_MAPPING.values()), | |
max_rows=None, | |
visible=False, | |
) | |
search_bar.submit( | |
search_tables, | |
[single_A100_for_search, multi_A100_for_search, search_bar], | |
[single_A100_leaderboard, multi_A100_leaderboard], | |
) | |
backend_checkboxes.select( | |
filter_tables, | |
[single_A100_for_search, multi_A100_for_search, | |
backend_checkboxes, datatype_checkboxes], | |
[single_A100_leaderboard, multi_A100_leaderboard], | |
) | |
datatype_checkboxes.select( | |
filter_tables, | |
[single_A100_for_search, multi_A100_for_search, | |
backend_checkboxes, datatype_checkboxes], | |
[single_A100_leaderboard, multi_A100_leaderboard], | |
) | |
with gr.Row(): | |
with gr.Accordion("π Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
elem_id="citation-button", | |
).style(show_copy_button=True) | |
dummy = gr.Textbox(visible=False) | |
demo.load( | |
change_tab, | |
dummy, | |
tabs, | |
_js=get_window_url_params, | |
) | |
# Restart space every hour | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=3600, | |
args=[LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN]) | |
scheduler.start() | |
# Launch demo | |
demo.queue(concurrency_count=40).launch() | |