Spaces:
Running
Running
BenchmarkBot
commited on
Commit
Β·
8e8c463
1
Parent(s):
67cbded
added plot
Browse files- app.py +106 -39
- src/assets/text_content.py +1 -1
- src/utils.py +2 -1
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
@@ -16,9 +17,9 @@ COLUMNS_MAPPING = {
|
|
16 |
"model": "Model π€",
|
17 |
"backend.name": "Backend π",
|
18 |
"backend.torch_dtype": "Datatype π₯",
|
19 |
-
"average": "Average H4 Score β¬οΈ",
|
20 |
"forward.peak_memory(MB)": "Peak Memory (MB) β¬οΈ",
|
21 |
"generate.throughput(tokens/s)": "Throughput (tokens/s) β¬οΈ",
|
|
|
22 |
}
|
23 |
COLUMNS_DATATYPES = ["markdown", "str", "str", "markdown", "number", "number"]
|
24 |
SORTING_COLUMN = ["Throughput (tokens/s) β¬οΈ"]
|
@@ -33,16 +34,14 @@ def get_benchmark_df(benchmark):
|
|
33 |
|
34 |
# load
|
35 |
bench_df = pd.read_csv(
|
36 |
-
f"./llm-perf-dataset/reports/{benchmark}
|
37 |
-
|
38 |
scores_df = pd.read_csv(
|
39 |
-
f"./llm-perf-dataset/reports/
|
40 |
bench_df = bench_df.merge(scores_df, on="model", how="left")
|
41 |
-
bench_df["average"] = bench_df["average"].apply(
|
42 |
-
make_clickable_score)
|
43 |
|
44 |
# preprocess
|
45 |
bench_df["model"] = bench_df["model"].apply(make_clickable_model)
|
|
|
46 |
# filter
|
47 |
bench_df = bench_df[list(COLUMNS_MAPPING.keys())]
|
48 |
# rename
|
@@ -53,55 +52,98 @@ def get_benchmark_df(benchmark):
|
|
53 |
return bench_df
|
54 |
|
55 |
|
56 |
-
|
|
|
57 |
|
58 |
-
# extract the average score (float) from the clickable score (clickable markdown)
|
59 |
-
raw_df["Average H4 Score β¬οΈ"] = raw_df["Average H4 Score β¬οΈ"].apply(
|
60 |
-
extract_score_from_clickable)
|
61 |
-
filtered_df = raw_df[
|
62 |
-
raw_df["Model π€"].str.lower().str.contains(text.lower()) &
|
63 |
-
raw_df["Backend π"].isin(backends) &
|
64 |
-
raw_df["Datatype π₯"].isin(datatypes) &
|
65 |
-
(raw_df["Average H4 Score β¬οΈ"] >= threshold)
|
66 |
-
]
|
67 |
-
filtered_df["Average H4 Score β¬οΈ"] = filtered_df["Average H4 Score β¬οΈ"].apply(
|
68 |
-
make_clickable_score)
|
69 |
|
70 |
-
|
|
|
|
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
demo = gr.Blocks(css=custom_css)
|
75 |
with demo:
|
|
|
76 |
gr.HTML(TITLE)
|
|
|
|
|
77 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
78 |
|
79 |
-
#
|
|
|
|
|
|
|
80 |
with gr.Row():
|
81 |
search_bar = gr.Textbox(
|
82 |
label="Model π€",
|
83 |
-
info="Search for a model name",
|
84 |
elem_id="search-bar",
|
85 |
)
|
86 |
backend_checkboxes = gr.CheckboxGroup(
|
87 |
label="Backends π",
|
88 |
choices=["pytorch", "onnxruntime"],
|
89 |
value=["pytorch", "onnxruntime"],
|
90 |
-
info="Select the backends",
|
91 |
elem_id="backend-checkboxes",
|
92 |
)
|
93 |
datatype_checkboxes = gr.CheckboxGroup(
|
94 |
label="Datatypes π₯",
|
95 |
choices=["float32", "float16"],
|
96 |
value=["float32", "float16"],
|
97 |
-
info="Select the load datatypes",
|
98 |
elem_id="datatype-checkboxes",
|
99 |
)
|
100 |
-
|
101 |
-
with gr.Row():
|
102 |
threshold_slider = gr.Slider(
|
103 |
label="Average H4 Score π",
|
104 |
-
info="
|
105 |
value=0.0,
|
106 |
elem_id="threshold-slider",
|
107 |
)
|
@@ -109,16 +151,14 @@ with demo:
|
|
109 |
with gr.Row():
|
110 |
submit_button = gr.Button(
|
111 |
value="Submit π",
|
112 |
-
info="Submit the filters",
|
113 |
elem_id="submit-button",
|
114 |
)
|
115 |
|
116 |
# leaderboard tabs
|
117 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
118 |
-
with gr.TabItem("π₯οΈ A100-80GB
|
119 |
gr.HTML(SINGLE_A100_TEXT)
|
120 |
|
121 |
-
single_A100_df = get_benchmark_df(benchmark="1xA100-80GB")
|
122 |
# Original leaderboard table
|
123 |
single_A100_leaderboard = gr.components.Dataframe(
|
124 |
value=single_A100_df,
|
@@ -135,15 +175,15 @@ with demo:
|
|
135 |
visible=False,
|
136 |
)
|
137 |
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
|
148 |
with gr.Row():
|
149 |
with gr.Accordion("π Citation", open=False):
|
@@ -153,6 +193,33 @@ with demo:
|
|
153 |
elem_id="citation-button",
|
154 |
).style(show_copy_button=True)
|
155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
# Restart space every hour
|
157 |
scheduler = BackgroundScheduler()
|
158 |
scheduler.add_job(restart_space, "interval", seconds=3600,
|
|
|
1 |
+
import plotly.express as px
|
2 |
import os
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
|
|
17 |
"model": "Model π€",
|
18 |
"backend.name": "Backend π",
|
19 |
"backend.torch_dtype": "Datatype π₯",
|
|
|
20 |
"forward.peak_memory(MB)": "Peak Memory (MB) β¬οΈ",
|
21 |
"generate.throughput(tokens/s)": "Throughput (tokens/s) β¬οΈ",
|
22 |
+
"h4_score": "H4 Score β¬οΈ",
|
23 |
}
|
24 |
COLUMNS_DATATYPES = ["markdown", "str", "str", "markdown", "number", "number"]
|
25 |
SORTING_COLUMN = ["Throughput (tokens/s) β¬οΈ"]
|
|
|
34 |
|
35 |
# load
|
36 |
bench_df = pd.read_csv(
|
37 |
+
f"./llm-perf-dataset/reports/{benchmark}.csv")
|
|
|
38 |
scores_df = pd.read_csv(
|
39 |
+
f"./llm-perf-dataset/reports/additional_data.csv")
|
40 |
bench_df = bench_df.merge(scores_df, on="model", how="left")
|
|
|
|
|
41 |
|
42 |
# preprocess
|
43 |
bench_df["model"] = bench_df["model"].apply(make_clickable_model)
|
44 |
+
bench_df["h4_score"] = bench_df["h4_score"].apply(make_clickable_score)
|
45 |
# filter
|
46 |
bench_df = bench_df[list(COLUMNS_MAPPING.keys())]
|
47 |
# rename
|
|
|
52 |
return bench_df
|
53 |
|
54 |
|
55 |
+
# Dataframes
|
56 |
+
single_A100_df = get_benchmark_df(benchmark="1xA100-80GB")
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
def get_benchmark_plot(benchmark):
|
60 |
+
if llm_perf_dataset_repo:
|
61 |
+
llm_perf_dataset_repo.git_pull()
|
62 |
|
63 |
+
# load
|
64 |
+
bench_df = pd.read_csv(
|
65 |
+
f"./llm-perf-dataset/reports/{benchmark}.csv")
|
66 |
+
scores_df = pd.read_csv(
|
67 |
+
f"./llm-perf-dataset/reports/additional_data.csv")
|
68 |
+
bench_df = bench_df.merge(scores_df, on="model", how="left")
|
69 |
|
70 |
+
fig = px.scatter(
|
71 |
+
bench_df, x="h4_score", y="generate.latency(s)",
|
72 |
+
color='model_type', symbol='backend.name', size='forward.peak_memory(MB)',
|
73 |
+
custom_data=['model', 'backend.name', 'backend.torch_dtype',
|
74 |
+
'forward.peak_memory(MB)', 'generate.throughput(tokens/s)'],
|
75 |
+
)
|
76 |
+
|
77 |
+
fig.update_traces(
|
78 |
+
title={
|
79 |
+
'text': "Model Score vs. Latency vs. Memory",
|
80 |
+
'y': 0.95, 'x': 0.5,
|
81 |
+
'xanchor': 'center',
|
82 |
+
'yanchor': 'top'
|
83 |
+
},
|
84 |
+
xaxis_title="Average H4 Score",
|
85 |
+
yaxis_title="Latency per 1000 Tokens (s)",
|
86 |
+
legend_title="Model Type",
|
87 |
+
legend=dict(
|
88 |
+
orientation="h",
|
89 |
+
yanchor="middle",
|
90 |
+
xanchor="center",
|
91 |
+
y=-0.15,
|
92 |
+
x=0.5
|
93 |
+
),
|
94 |
+
hovertemplate="<br>".join([
|
95 |
+
"Model: %{customdata[0]}",
|
96 |
+
"Backend: %{customdata[1]}",
|
97 |
+
"Datatype: %{customdata[2]}",
|
98 |
+
"Peak Memory (MB): %{customdata[3]}",
|
99 |
+
"Throughput (tokens/s): %{customdata[4]}",
|
100 |
+
"Latency per 1000 Tokens (s): %{y}",
|
101 |
+
"Average H4 Score: %{x}"
|
102 |
+
])
|
103 |
+
)
|
104 |
+
|
105 |
+
return fig
|
106 |
+
|
107 |
+
|
108 |
+
# Plots
|
109 |
+
single_A100_plot = get_benchmark_plot(benchmark="1xA100-80GB")
|
110 |
+
|
111 |
+
# Demo interface
|
112 |
demo = gr.Blocks(css=custom_css)
|
113 |
with demo:
|
114 |
+
# leaderboard title
|
115 |
gr.HTML(TITLE)
|
116 |
+
|
117 |
+
# introduction text
|
118 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
119 |
|
120 |
+
# control panel title
|
121 |
+
gr.HTML("<h2>Control Panel ποΈ</h2>")
|
122 |
+
|
123 |
+
# control panel interface
|
124 |
with gr.Row():
|
125 |
search_bar = gr.Textbox(
|
126 |
label="Model π€",
|
127 |
+
info="π Search for a model name",
|
128 |
elem_id="search-bar",
|
129 |
)
|
130 |
backend_checkboxes = gr.CheckboxGroup(
|
131 |
label="Backends π",
|
132 |
choices=["pytorch", "onnxruntime"],
|
133 |
value=["pytorch", "onnxruntime"],
|
134 |
+
info="βοΈ Select the backends",
|
135 |
elem_id="backend-checkboxes",
|
136 |
)
|
137 |
datatype_checkboxes = gr.CheckboxGroup(
|
138 |
label="Datatypes π₯",
|
139 |
choices=["float32", "float16"],
|
140 |
value=["float32", "float16"],
|
141 |
+
info="βοΈ Select the load datatypes",
|
142 |
elem_id="datatype-checkboxes",
|
143 |
)
|
|
|
|
|
144 |
threshold_slider = gr.Slider(
|
145 |
label="Average H4 Score π",
|
146 |
+
info="lter by minimum average H4 score",
|
147 |
value=0.0,
|
148 |
elem_id="threshold-slider",
|
149 |
)
|
|
|
151 |
with gr.Row():
|
152 |
submit_button = gr.Button(
|
153 |
value="Submit π",
|
|
|
154 |
elem_id="submit-button",
|
155 |
)
|
156 |
|
157 |
# leaderboard tabs
|
158 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
159 |
+
with gr.TabItem("π₯οΈ A100-80GB Leaderboard π", id=0):
|
160 |
gr.HTML(SINGLE_A100_TEXT)
|
161 |
|
|
|
162 |
# Original leaderboard table
|
163 |
single_A100_leaderboard = gr.components.Dataframe(
|
164 |
value=single_A100_df,
|
|
|
175 |
visible=False,
|
176 |
)
|
177 |
|
178 |
+
with gr.TabItem("π₯οΈ A100-80GB Plot π", id=1):
|
179 |
+
# Original leaderboard plot
|
180 |
+
gr.HTML(SINGLE_A100_TEXT)
|
181 |
+
|
182 |
+
single_A100_plotly = gr.components.Plot(
|
183 |
+
value=single_A100_plot,
|
184 |
+
elem_id="1xA100-plot",
|
185 |
+
show_label=False,
|
186 |
+
)
|
187 |
|
188 |
with gr.Row():
|
189 |
with gr.Accordion("π Citation", open=False):
|
|
|
193 |
elem_id="citation-button",
|
194 |
).style(show_copy_button=True)
|
195 |
|
196 |
+
|
197 |
+
def submit_query(text, backends, datatypes, threshold, raw_df):
|
198 |
+
raw_df["H4 Score β¬οΈ"] = raw_df["H4 Score β¬οΈ"].apply(
|
199 |
+
extract_score_from_clickable)
|
200 |
+
|
201 |
+
filtered_df = raw_df[
|
202 |
+
raw_df["Model π€"].str.lower().str.contains(text.lower()) &
|
203 |
+
raw_df["Backend π"].isin(backends) &
|
204 |
+
raw_df["Datatype π₯"].isin(datatypes) &
|
205 |
+
(raw_df["H4 Score β¬οΈ"] >= threshold)
|
206 |
+
]
|
207 |
+
|
208 |
+
filtered_df["H4 Score β¬οΈ"] = filtered_df["H4 Score β¬οΈ"].apply(
|
209 |
+
make_clickable_score)
|
210 |
+
return filtered_df
|
211 |
+
|
212 |
+
|
213 |
+
# Callbacks
|
214 |
+
submit_button.click(
|
215 |
+
submit_query,
|
216 |
+
[
|
217 |
+
search_bar, backend_checkboxes, datatype_checkboxes, threshold_slider,
|
218 |
+
single_A100_for_search
|
219 |
+
],
|
220 |
+
[single_A100_leaderboard]
|
221 |
+
)
|
222 |
+
|
223 |
# Restart space every hour
|
224 |
scheduler = BackgroundScheduler()
|
225 |
scheduler.add_job(restart_space, "interval", seconds=3600,
|
src/assets/text_content.py
CHANGED
@@ -8,7 +8,7 @@ Anyone from the community can request a model or a hardware+backend+optimization
|
|
8 |
- Hardware+Backend+Optimization requests should be made in the π€ Open LLM-Perf Leaderboard ποΈ [community discussions](https://huggingface.co/spaces/optimum/llm-perf-leaderboard/discussions) for open discussion about their relevance and feasibility.
|
9 |
"""
|
10 |
|
11 |
-
SINGLE_A100_TEXT = """<h3>Single-GPU
|
12 |
<ul>
|
13 |
<li>Singleton Batch (1)</li>
|
14 |
<li>Thousand Tokens (1000)</li>
|
|
|
8 |
- Hardware+Backend+Optimization requests should be made in the π€ Open LLM-Perf Leaderboard ποΈ [community discussions](https://huggingface.co/spaces/optimum/llm-perf-leaderboard/discussions) for open discussion about their relevance and feasibility.
|
9 |
"""
|
10 |
|
11 |
+
SINGLE_A100_TEXT = """<h3>Single-GPU Benchmark (1xA100):</h3>
|
12 |
<ul>
|
13 |
<li>Singleton Batch (1)</li>
|
14 |
<li>Thousand Tokens (1000)</li>
|
src/utils.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from huggingface_hub import HfApi, Repository
|
2 |
|
3 |
|
@@ -68,4 +69,4 @@ def make_clickable_score(score):
|
|
68 |
|
69 |
|
70 |
def extract_score_from_clickable(clickable_score) -> float:
|
71 |
-
return float(
|
|
|
1 |
+
import re
|
2 |
from huggingface_hub import HfApi, Repository
|
3 |
|
4 |
|
|
|
69 |
|
70 |
|
71 |
def extract_score_from_clickable(clickable_score) -> float:
|
72 |
+
return float(re.findall(r"\d+\.\d+", clickable_score)[-1])
|