import os import gradio as gr import pandas as pd from apscheduler.schedulers.background import BackgroundScheduler from src.assets.text_content import TITLE, INTRODUCTION_TEXT from src.assets.css_html_js import custom_css, get_window_url_params from src.utils import restart_space, load_dataset_repo, make_clickable_model LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard" LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset" OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN") OLD_COLUMNS = ["model", "backend.name", "backend.torch_dtype", "generate.latency(s)", "generate.throughput(tokens/s)"] NEW_COLUMNS = ["Model", "Backend 🏭", "Load Datatype", "Latency (s) ⬇️", "Throughput (tokens/s) ⬆️"] COLUMNS_DATATYPES = ["markdown", "str", "str", "number", "number"] SORTING_COLUMN = ["Throughput (tokens/s) ⬆️"] llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN) def get_benchmark_df(): if llm_perf_dataset_repo: llm_perf_dataset_repo.git_pull() # load df = pd.read_csv( "./llm-perf-dataset/reports/cuda_1_100/inference_report.csv") # remove quantized models df = df[df["backend.quantization"].isnull()] # preprocess df["model"] = df["model"].apply(make_clickable_model) # filter df = df[OLD_COLUMNS] # rename df.rename(columns={ df_col: rename_col for df_col, rename_col in zip(OLD_COLUMNS, NEW_COLUMNS) }, inplace=True) # sort df.sort_values(by=SORTING_COLUMN, ascending=False, inplace=True) return df # Define demo interface demo = gr.Blocks(css=custom_css) with demo: gr.HTML(TITLE) gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("🖥️ 4xA100-80GB Benchmark 🏋️", elem_id="a100-benchmark", id=0): dataframe_text = "

Batch Size: 1 ; Generated Tokens: 100

" gr.HTML(dataframe_text) benchmark_df = get_benchmark_df() leaderboard_table_lite = gr.components.Dataframe( value=benchmark_df, datatype=COLUMNS_DATATYPES, headers=NEW_COLUMNS, elem_id="pytorch-a100-benchmark", ) # Restart space every hour scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=3600, args=[LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN]) scheduler.start() # Launch demo demo.queue(concurrency_count=40).launch()