import os import gradio as gr import pandas as pd from apscheduler.schedulers.background import BackgroundScheduler from src.assets.text_content import TITLE, INTRODUCTION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT from src.assets.css_html_js import custom_css, get_window_url_params from src.utils import restart_space, load_dataset_repo, make_clickable_model LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard" LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset" OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN") COLUMNS_MAPPING = { "model": "Model 🤗", "backend.name": "Backend 🏭", "backend.torch_dtype": "Load Datatype 📥", "generate.latency(s)": "Latency (s) ⬇️", "generate.throughput(tokens/s)": "Throughput (tokens/s) ⬆️", } COLUMNS_DATATYPES = ["markdown", "str", "str", "number", "number"] SORTING_COLUMN = ["Throughput (tokens/s) ⬆️"] llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN) def get_benchmark_df(benchmark): if llm_perf_dataset_repo: llm_perf_dataset_repo.git_pull() # load df = pd.read_csv( f"./llm-perf-dataset/reports/{benchmark}/inference_report.csv") # preprocess df["model"] = df["model"].apply(make_clickable_model) # filter df = df[COLUMNS_MAPPING.keys()] # rename df.rename(columns=COLUMNS_MAPPING, inplace=True) # sort df.sort_values(by=SORTING_COLUMN, ascending=False, inplace=True) return df # Define demo interface demo = gr.Blocks(css=custom_css) with demo: gr.HTML(TITLE) gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("🖥️ A100-80GB Benchmark 🏋️", elem_id="A100-benchmark", id=0): SINGLE_A100_TEXT = """

Single-GPU (1xA100):

""" gr.HTML(SINGLE_A100_TEXT) single_A100_df = get_benchmark_df(benchmark="1xA100-80GB") leaderboard_table_lite = gr.components.Dataframe( value=single_A100_df, datatype=COLUMNS_DATATYPES, headers=COLUMNS_MAPPING.values(), elem_id="1xA100-table", ) # MULTI_A100_TEXT = """

Multi-GPU (4xA100):

# """ # gr.HTML(MULTI_A100_TEXT) # multi_A100_df = get_benchmark_df(benchmark="4xA100-80GB") # leaderboard_table_full = gr.components.Dataframe( # value=multi_A100_df, # datatype=COLUMNS_DATATYPES, # headers=COLUMNS_MAPPING.values(), # elem_id="4xA100-table", # ) with gr.Row(): with gr.Accordion("📙 Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, elem_id="citation-button", ).style(show_copy_button=True) # Restart space every hour scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=3600, args=[LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN]) scheduler.start() # Launch demo demo.queue(concurrency_count=40).launch()