import gradio as gr

from src.utils import model_hyperlink, process_score

LEADERBOARD_COLUMN_TO_DATATYPE = {
    # open llm
    "Model ๐Ÿค—": "markdown",
    "Experiment ๐Ÿงช": "str",
    # primary measurements
    "Prefill (s)": "number",
    "Decode (tokens/s)": "number",
    "Memory (MB)": "number",
    "Energy (tokens/kWh)": "number",
    # deployment settings
    "Backend ๐Ÿญ": "str",
    "Precision ๐Ÿ“ฅ": "str",
    "Quantization ๐Ÿ—œ๏ธ": "str",
    "Attention ๐Ÿ‘๏ธ": "str",
    "Kernel โš›๏ธ": "str",
    # additional measurements
    # "Reserved Memory (MB)": "number",
    # "Used Memory (MB)": "number",
    "Open LLM Score (%)": "number",
    "End-to-End (s)": "number",
    "Architecture ๐Ÿ›๏ธ": "str",
    "Params (B)": "number",
}

PRIMARY_COLUMNS = [
    "Model ๐Ÿค—",
    "Experiment ๐Ÿงช",
    "Prefill (s)",
    "Decode (tokens/s)",
    "Memory (MB)",
    "Energy (tokens/kWh)",
    "Open LLM Score (%)",
]


def process_model(model_name):
    link = f"https://huggingface.co/{model_name}"
    return model_hyperlink(link, model_name)


def get_leaderboard_df(llm_perf_df):
    df = llm_perf_df.copy()
    # transform for leaderboard
    df["Model ๐Ÿค—"] = df["Model ๐Ÿค—"].apply(process_model)
    # process quantization for leaderboard
    df["Open LLM Score (%)"] = df.apply(
        lambda x: process_score(x["Open LLM Score (%)"], x["Quantization ๐Ÿ—œ๏ธ"]), axis=1
    )
    return df


def create_leaderboard_table(llm_perf_df):
    # get dataframe
    leaderboard_df = get_leaderboard_df(llm_perf_df)

    # create search bar
    with gr.Row():
        search_bar = gr.Textbox(
            label="Model ๐Ÿค—",
            info="๐Ÿ” Search for a model name",
            elem_id="search-bar",
        )
    # create checkboxes
    with gr.Row():
        columns_checkboxes = gr.CheckboxGroup(
            label="Columns ๐Ÿ“Š",
            value=PRIMARY_COLUMNS,
            choices=list(LEADERBOARD_COLUMN_TO_DATATYPE.keys()),
            info="โ˜‘๏ธ Select the columns to display",
            elem_id="columns-checkboxes",
        )
    # create table
    leaderboard_table = gr.components.Dataframe(
        value=leaderboard_df[PRIMARY_COLUMNS],
        datatype=list(LEADERBOARD_COLUMN_TO_DATATYPE.values()),
        headers=list(LEADERBOARD_COLUMN_TO_DATATYPE.keys()),
        elem_id="leaderboard-table",
    )

    return search_bar, columns_checkboxes, leaderboard_table