import os import json import gradio as gr import pandas as pd from apscheduler.schedulers.background import BackgroundScheduler from src.assets.text_content import TITLE, INTRODUCTION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT from src.utils import restart_space, load_dataset_repo, make_clickable_model from src.assets.css_html_js import custom_css, get_window_url_params LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard" LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset" OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None) COLUMNS_MAPPING = { "model": "Model 🤗", "backend.name": "Backend 🏭", "backend.torch_dtype": "Datatype 📥", "average": "Average H4 Score ⬆️", "generate.throughput(tokens/s)": "Throughput (tokens/s) ⬆️", } COLUMNS_DATATYPES = ["markdown", "str", "str", "number", "number", "number"] SORTING_COLUMN = ["Throughput (tokens/s) ⬆️"] llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN) def get_benchmark_df(benchmark): if llm_perf_dataset_repo: llm_perf_dataset_repo.git_pull() # load bench_df = pd.read_csv( f"./llm-perf-dataset/reports/{benchmark}/inference_report.csv") scores_df = pd.read_csv( f"./llm-perf-dataset/reports/average_scores.csv") # merge on model bench_df = bench_df.merge( scores_df, how="left", left_on="model", right_on="model") # preprocess bench_df["model"] = bench_df["model"].apply(make_clickable_model) # filter bench_df = bench_df[list(COLUMNS_MAPPING.keys())] # rename bench_df.rename(columns=COLUMNS_MAPPING, inplace=True) # sort bench_df.sort_values(by=SORTING_COLUMN, ascending=False, inplace=True) return bench_df def change_tab(query_param): query_param = query_param.replace("'", '"') query_param = json.loads(query_param) if ( isinstance(query_param, dict) and "tab" in query_param and query_param["tab"] == "evaluation" ): return gr.Tabs.update(selected=1) else: return gr.Tabs.update(selected=0) def search_tables(single_df, multi_df, query): filtered_single = single_df[single_df["Model 🤗"].str.contains(query)] filtered_multi = multi_df[multi_df["Model 🤗"].str.contains(query)] return filtered_single, filtered_multi def threshold_tables(single_df, multi_df, threshold): filtered_single = single_df[single_df["Average H4 Score ⬆️"] >= threshold] filtered_multi = multi_df[multi_df["Average H4 Score ⬆️"] >= threshold] return filtered_single, filtered_multi def filter_tables(single_df, multi_df, backends, datatypes): filtered_single = single_df[single_df["Backend 🏭"].isin(backends)] filtered_single = filtered_single[filtered_single["Datatype 📥"].isin( datatypes)] filtered_multi = multi_df[multi_df["Backend 🏭"].isin(backends)] filtered_multi = filtered_multi[filtered_multi["Datatype 📥"].isin( datatypes)] return filtered_single, filtered_multi # Define demo interface demo = gr.Blocks(css=custom_css) with demo: gr.HTML(TITLE) gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") with gr.Row(): with gr.Box(elem_id="search-bar-table-box"): search_bar = gr.Textbox( label="Search 🔎", info="Search for a model", placeholder="Write and press ENTER...", elem_id="search-bar", ) threshold_slider = gr.Slider( label="Threshold 📈", info="Filter by average H4 score", min_value=0.0, max_value=100.0, step_size=1.0, value=0.0, elem_id="threshold-slider", ) backend_checkboxes = gr.CheckboxGroup( choices=["pytorch", "onnxruntime"], value=["pytorch"], label="Backends 🏭", info="Select the backends", elem_id="backend-checkboxes", ) datatype_checkboxes = gr.CheckboxGroup( choices=["float32", "float16"], value=["float32", "float16"], label="Datatypes 📥", info="Select the load datatypes", elem_id="datatype-checkboxes", ) with gr.Row(): submit_button = gr.Button( label="Submit 🚀", info="Submit the filters", elem_id="submit-button", ) with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("🖥️ A100-80GB Benchmark 🏋️", elem_id="A100-benchmark", id=0): SINGLE_A100_TEXT = """

Single-GPU (1xA100):

""" gr.HTML(SINGLE_A100_TEXT) single_A100_df = get_benchmark_df(benchmark="1xA100-80GB") # Original leaderboard table single_A100_leaderboard = gr.components.Dataframe( value=single_A100_df, datatype=COLUMNS_DATATYPES, headers=list(COLUMNS_MAPPING.values()), elem_id="1xA100-table", ) # Dummy Leaderboard table for handling the case when the user uses backspace key single_A100_for_search = gr.components.Dataframe( value=single_A100_df, datatype=COLUMNS_DATATYPES, headers=list(COLUMNS_MAPPING.values()), max_rows=None, visible=False, ) MULTI_A100_TEXT = """

Multi-GPU (4xA100):

""" gr.HTML(MULTI_A100_TEXT) multi_A100_df = get_benchmark_df(benchmark="4xA100-80GB") multi_A100_leaderboard = gr.components.Dataframe( value=multi_A100_df, datatype=COLUMNS_DATATYPES, headers=list(COLUMNS_MAPPING.values()), elem_id="4xA100-table", ) # Dummy Leaderboard table for handling the case when the user uses backspace key multi_A100_for_search = gr.components.Dataframe( value=multi_A100_df, datatype=COLUMNS_DATATYPES, headers=list(COLUMNS_MAPPING.values()), max_rows=None, visible=False, ) # Callbacks search_bar.submit( search_tables, [single_A100_for_search, multi_A100_for_search, search_bar], [single_A100_leaderboard, multi_A100_leaderboard], ) backend_checkboxes.select( filter_tables, [single_A100_for_search, multi_A100_for_search, backend_checkboxes, datatype_checkboxes], [single_A100_leaderboard, multi_A100_leaderboard], ) datatype_checkboxes.select( filter_tables, [single_A100_for_search, multi_A100_for_search, backend_checkboxes, datatype_checkboxes], [single_A100_leaderboard, multi_A100_leaderboard], ) threshold_slider.change( filter_tables, [single_A100_for_search, multi_A100_for_search, backend_checkboxes, datatype_checkboxes], [single_A100_leaderboard, multi_A100_leaderboard], ) with gr.Row(): with gr.Accordion("📙 Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, elem_id="citation-button", ).style(show_copy_button=True) dummy = gr.Textbox(visible=False) demo.load( change_tab, dummy, tabs, _js=get_window_url_params, ) # Restart space every hour scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=3600, args=[LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN]) scheduler.start() # Launch demo demo.queue(concurrency_count=40).launch()