Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
""" | |
Created on Fri Apr 19 16:58:55 2024 | |
@author: phonoDS | |
""" | |
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline | |
import tensorflow as tf | |
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) | |
# Load pre-trained model and tokenizer | |
saved_directory = "orYx-models/finetuned-roberta-leadership-sentiment-analysis" | |
tokenizer = AutoTokenizer.from_pretrained(saved_directory) | |
model = AutoModelForSequenceClassification.from_pretrained(saved_directory) | |
nlp = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) | |
# Define function to analyze sentiment | |
def analyze_sentiment(text): | |
result = nlp(text) | |
return result[0]['label'], result[0]['score'] | |
# Streamlit UI | |
st.set_page_config(page_title="Sentiment Analysis", layout="wide") | |
col1, col2 = st.columns([6, 1]) # Divide the screen into two columns | |
# Text titles below the text box | |
st.markdown("This sentiment analysis model serves as a testing prototype, specifically developed for LDS to assess the variability and precision of OrYx Models' sentiment analysis tool.") | |
st.markdown(" ") | |
st.markdown("All feedback gathered from LDS, including both structured and unstructured data, will be incorporated into the model to enhance its domain specificity and maximize accuracy.") | |
with col2: # Right-aligned column for the logo | |
st.image("https://huggingface.co/spaces/orYx-models/Leadership-sentiment-analyzer/resolve/main/oryx_logo%20(2).png", width=200, use_column_width=False) # Provide the path to your company logo | |
with col1: # Main content area | |
st.title("Sentiment Analysis Prototype Tool by orYx Models") | |
user_input = st.text_area("Enter text to analyze:", height=200) | |
submit_button = st.button("Analyze") | |
if submit_button and user_input: | |
sentiment, score = analyze_sentiment(user_input) | |
st.markdown("Sentiment Analysis Result:") | |
st.write(f"Sentiment: {sentiment}") | |
st.write(f"Confidence: {score*100:.2f}%") | |