Update app.py
Browse files
app.py
CHANGED
@@ -11,7 +11,7 @@ import tensorflow as tf
|
|
11 |
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
|
12 |
|
13 |
# Load pre-trained model and tokenizer
|
14 |
-
saved_directory = "orYx-models/
|
15 |
tokenizer = AutoTokenizer.from_pretrained(saved_directory)
|
16 |
model = AutoModelForSequenceClassification.from_pretrained(saved_directory)
|
17 |
nlp = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
@@ -26,7 +26,7 @@ st.set_page_config(page_title="Sentiment Analysis", layout="wide")
|
|
26 |
col1, col2 = st.columns([6, 1]) # Divide the screen into two columns
|
27 |
|
28 |
with col2: # Right-aligned column for the logo
|
29 |
-
st.image("orYx-models/
|
30 |
|
31 |
with col1: # Main content area
|
32 |
st.title("Sentiment Analysis Prototype Tool by orYx Models")
|
|
|
11 |
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
|
12 |
|
13 |
# Load pre-trained model and tokenizer
|
14 |
+
saved_directory = "orYx-models/finetuned-roberta-leadership-sentiment-analysis"
|
15 |
tokenizer = AutoTokenizer.from_pretrained(saved_directory)
|
16 |
model = AutoModelForSequenceClassification.from_pretrained(saved_directory)
|
17 |
nlp = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
|
|
26 |
col1, col2 = st.columns([6, 1]) # Divide the screen into two columns
|
27 |
|
28 |
with col2: # Right-aligned column for the logo
|
29 |
+
st.image("orYx-models/finetuned-roberta-leadership-sentiment-analysis", width=200, use_column_width=False) # Provide the path to your company logo
|
30 |
|
31 |
with col1: # Main content area
|
32 |
st.title("Sentiment Analysis Prototype Tool by orYx Models")
|