# -*- coding: utf-8 -*- """ Created on Fri Apr 19 16:58:55 2024 @author: phonoDS """ import streamlit as st from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline import tensorflow as tf tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) # Load pre-trained model and tokenizer saved_directory = "orYx-models/Leadership-sentiment-analyzer" tokenizer = AutoTokenizer.from_pretrained(saved_directory) model = AutoModelForSequenceClassification.from_pretrained(saved_directory) nlp = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) # Define function to analyze sentiment def analyze_sentiment(text): result = nlp(text) return result[0]['label'], result[0]['score'] # Streamlit UI st.set_page_config(page_title="Sentiment Analysis", layout="wide") col1, col2 = st.columns([6, 1]) # Divide the screen into two columns with col2: # Right-aligned column for the logo st.image("orYx-models/Leadership-sentiment-analyzer", width=200, use_column_width=False) # Provide the path to your company logo with col1: # Main content area st.title("Sentiment Analysis Prototype Tool by orYx Models") user_input = st.text_area("Enter text to analyze:", height=200) submit_button = st.button("Analyze:") if submit_button and user_input: sentiment, score = analyze_sentiment(user_input) st.markdown("Sentiment Analysis Result:") st.write(f"Sentiment: {sentiment}") st.write(f"Confidence: {score*100:.2f}%") # Text titles below the text box st.markdown("This sentiment analysis model serves as a testing prototype, specifically developed for LDS to assess the variability and precision of OrYx Models' sentiment analysis tool.") st.markdown("All feedback gathered from LDS, including both structured and unstructured data, will be incorporated into the model to enhance its domain specificity and maximize accuracy.")