Spaces:
Paused
Paused
File size: 10,265 Bytes
3bbba47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
# Copyright (c) Facebook, Inc. and its affiliates.
import re
from tqdm import tqdm
class EvalAIAnswerProcessor:
"""
Processes an answer similar to Eval AI
copied from
https://github.com/facebookresearch/mmf/blob/c46b3b3391275b4181567db80943473a89ab98ab/pythia/tasks/processors.py#L897
"""
CONTRACTIONS = {
"aint": "ain't",
"arent": "aren't",
"cant": "can't",
"couldve": "could've",
"couldnt": "couldn't",
"couldn'tve": "couldn't've",
"couldnt've": "couldn't've",
"didnt": "didn't",
"doesnt": "doesn't",
"dont": "don't",
"hadnt": "hadn't",
"hadnt've": "hadn't've",
"hadn'tve": "hadn't've",
"hasnt": "hasn't",
"havent": "haven't",
"hed": "he'd",
"hed've": "he'd've",
"he'dve": "he'd've",
"hes": "he's",
"howd": "how'd",
"howll": "how'll",
"hows": "how's",
"Id've": "I'd've",
"I'dve": "I'd've",
"Im": "I'm",
"Ive": "I've",
"isnt": "isn't",
"itd": "it'd",
"itd've": "it'd've",
"it'dve": "it'd've",
"itll": "it'll",
"let's": "let's",
"maam": "ma'am",
"mightnt": "mightn't",
"mightnt've": "mightn't've",
"mightn'tve": "mightn't've",
"mightve": "might've",
"mustnt": "mustn't",
"mustve": "must've",
"neednt": "needn't",
"notve": "not've",
"oclock": "o'clock",
"oughtnt": "oughtn't",
"ow's'at": "'ow's'at",
"'ows'at": "'ow's'at",
"'ow'sat": "'ow's'at",
"shant": "shan't",
"shed've": "she'd've",
"she'dve": "she'd've",
"she's": "she's",
"shouldve": "should've",
"shouldnt": "shouldn't",
"shouldnt've": "shouldn't've",
"shouldn'tve": "shouldn't've",
"somebody'd": "somebodyd",
"somebodyd've": "somebody'd've",
"somebody'dve": "somebody'd've",
"somebodyll": "somebody'll",
"somebodys": "somebody's",
"someoned": "someone'd",
"someoned've": "someone'd've",
"someone'dve": "someone'd've",
"someonell": "someone'll",
"someones": "someone's",
"somethingd": "something'd",
"somethingd've": "something'd've",
"something'dve": "something'd've",
"somethingll": "something'll",
"thats": "that's",
"thered": "there'd",
"thered've": "there'd've",
"there'dve": "there'd've",
"therere": "there're",
"theres": "there's",
"theyd": "they'd",
"theyd've": "they'd've",
"they'dve": "they'd've",
"theyll": "they'll",
"theyre": "they're",
"theyve": "they've",
"twas": "'twas",
"wasnt": "wasn't",
"wed've": "we'd've",
"we'dve": "we'd've",
"weve": "we've",
"werent": "weren't",
"whatll": "what'll",
"whatre": "what're",
"whats": "what's",
"whatve": "what've",
"whens": "when's",
"whered": "where'd",
"wheres": "where's",
"whereve": "where've",
"whod": "who'd",
"whod've": "who'd've",
"who'dve": "who'd've",
"wholl": "who'll",
"whos": "who's",
"whove": "who've",
"whyll": "why'll",
"whyre": "why're",
"whys": "why's",
"wont": "won't",
"wouldve": "would've",
"wouldnt": "wouldn't",
"wouldnt've": "wouldn't've",
"wouldn'tve": "wouldn't've",
"yall": "y'all",
"yall'll": "y'all'll",
"y'allll": "y'all'll",
"yall'd've": "y'all'd've",
"y'alld've": "y'all'd've",
"y'all'dve": "y'all'd've",
"youd": "you'd",
"youd've": "you'd've",
"you'dve": "you'd've",
"youll": "you'll",
"youre": "you're",
"youve": "you've",
}
NUMBER_MAP = {
"none": "0",
"zero": "0",
"one": "1",
"two": "2",
"three": "3",
"four": "4",
"five": "5",
"six": "6",
"seven": "7",
"eight": "8",
"nine": "9",
"ten": "10",
}
ARTICLES = ["a", "an", "the"]
PERIOD_STRIP = re.compile(r"(?!<=\d)(\.)(?!\d)")
COMMA_STRIP = re.compile(r"(?<=\d)(\,)+(?=\d)")
PUNCTUATIONS = [
";",
r"/",
"[",
"]",
'"',
"{",
"}",
"(",
")",
"=",
"+",
"\\",
"_",
"-",
">",
"<",
"@",
"`",
",",
"?",
"!",
]
def __init__(self, *args, **kwargs):
pass
def word_tokenize(self, word):
word = word.lower()
word = word.replace(",", "").replace("?", "").replace("'s", " 's")
return word.strip()
def process_punctuation(self, in_text):
out_text = in_text
for p in self.PUNCTUATIONS:
if (p + " " in in_text or " " + p in in_text) or (
re.search(self.COMMA_STRIP, in_text) is not None
):
out_text = out_text.replace(p, "")
else:
out_text = out_text.replace(p, " ")
out_text = self.PERIOD_STRIP.sub("", out_text, re.UNICODE)
return out_text
def process_digit_article(self, in_text):
out_text = []
temp_text = in_text.lower().split()
for word in temp_text:
word = self.NUMBER_MAP.setdefault(word, word)
if word not in self.ARTICLES:
out_text.append(word)
else:
pass
for word_id, word in enumerate(out_text):
if word in self.CONTRACTIONS:
out_text[word_id] = self.CONTRACTIONS[word]
out_text = " ".join(out_text)
return out_text
def __call__(self, item):
item = self.word_tokenize(item)
item = item.replace("\n", " ").replace("\t", " ").strip()
item = self.process_punctuation(item)
item = self.process_digit_article(item)
return item
class TextVQAAccuracyEvaluator:
def __init__(self):
self.answer_processor = EvalAIAnswerProcessor()
def _compute_answer_scores(self, raw_answers):
"""
compute the accuracy (soft score) of human answers
"""
answers = [self.answer_processor(a) for a in raw_answers]
assert len(answers) == 10
gt_answers = list(enumerate(answers))
unique_answers = set(answers)
unique_answer_scores = {}
for unique_answer in unique_answers:
accs = []
for gt_answer in gt_answers:
other_answers = [item for item in gt_answers if item != gt_answer]
matching_answers = [
item for item in other_answers if item[1] == unique_answer
]
acc = min(1, float(len(matching_answers)) / 3)
accs.append(acc)
unique_answer_scores[unique_answer] = sum(accs) / len(accs)
return unique_answer_scores
def eval_pred_list(self, pred_list):
pred_scores = []
for entry in tqdm(pred_list):
pred_answer = self.answer_processor(entry["pred_answer"])
unique_answer_scores = self._compute_answer_scores(entry["gt_answers"])
score = unique_answer_scores.get(pred_answer, 0.0)
pred_scores.append(score)
accuracy = sum(pred_scores) / len(pred_scores)
return accuracy
class STVQAAccuracyEvaluator:
def __init__(self):
self.answer_processor = EvalAIAnswerProcessor()
def eval_pred_list(self, pred_list):
pred_scores = []
for entry in pred_list:
pred_answer = self.answer_processor(entry["pred_answer"])
gts = [self.answer_processor(a) for a in entry["gt_answers"]]
score = 1.0 if pred_answer in gts else 0.0
pred_scores.append(score)
accuracy = sum(pred_scores) / len(pred_scores)
return accuracy
class STVQAANLSEvaluator:
def __init__(self):
import editdistance # install with `pip install editdistance`
self.get_edit_distance = editdistance.eval
def get_anls(self, s1, s2):
s1 = s1.lower().strip()
s2 = s2.lower().strip()
iou = 1 - self.get_edit_distance(s1, s2) / max(len(s1), len(s2))
anls = iou if iou >= 0.5 else 0.0
return anls
def eval_pred_list(self, pred_list):
pred_scores = []
for entry in pred_list:
anls = max(
self.get_anls(entry["pred_answer"], gt) for gt in entry["gt_answers"]
)
pred_scores.append(anls)
accuracy = sum(pred_scores) / len(pred_scores)
return accuracy
class TextCapsBleu4Evaluator:
def __init__(self):
# The following script requires Java 1.8.0 and pycocotools installed.
# The pycocoevalcap can be installed with pip as
# pip install git+https://github.com/ronghanghu/coco-caption.git@python23
# Original pycocoevalcap code is at https://github.com/tylin/coco-caption
# but has no python3 support yet.
try:
from pycocoevalcap.bleu.bleu import Bleu
from pycocoevalcap.tokenizer.ptbtokenizer import PTBTokenizer
except ModuleNotFoundError:
print(
"Please install pycocoevalcap module using "
"pip install git+https://github.com/ronghanghu/coco-caption.git@python23" # noqa
)
raise
self.tokenizer = PTBTokenizer()
self.scorer = Bleu(4)
def eval_pred_list(self, pred_list):
# Create reference and hypotheses captions.
gts = {}
res = {}
for idx, entry in enumerate(pred_list):
gts[idx] = [{"caption": a} for a in entry["gt_answers"]]
res[idx] = [{"caption": entry["pred_answer"]}]
gts = self.tokenizer.tokenize(gts)
res = self.tokenizer.tokenize(res)
score, _ = self.scorer.compute_score(gts, res)
bleu4 = score[3] # score is (Bleu-1, Bleu-2, Bleu-3, Bleu-4)
return bleu4
|