Spaces:
Sleeping
Sleeping
File size: 31,941 Bytes
d2c1af1 68f913d bf8e6b0 68f913d bf8e6b0 a09b56d bf8e6b0 a09b56d bf8e6b0 68f913d bf8e6b0 68f913d bf8e6b0 68f913d a09b56d bf8e6b0 68f913d bf8e6b0 68f913d bf8e6b0 68f913d bf8e6b0 68f913d a09b56d bf8e6b0 68f913d bf8e6b0 68f913d bf8e6b0 68f913d bf8e6b0 68f913d bf8e6b0 68f913d bf8e6b0 68f913d bf8e6b0 68f913d bf8e6b0 68f913d a09b56d 68f913d bf8e6b0 68f913d a09b56d bf8e6b0 68f913d bf8e6b0 68f913d bf8e6b0 a09b56d bf8e6b0 68f913d a09b56d bf8e6b0 a09b56d bf8e6b0 a09b56d bf8e6b0 a09b56d bf8e6b0 a09b56d bf8e6b0 a09b56d bf8e6b0 a09b56d bf8e6b0 68f913d bf8e6b0 68f913d bf8e6b0 68f913d bf8e6b0 68f913d bf8e6b0 68f913d bf8e6b0 68f913d bf8e6b0 a09b56d bf8e6b0 68f913d a09b56d bf8e6b0 a09b56d bf8e6b0 68f913d a09b56d bf8e6b0 68f913d bf8e6b0 68f913d bf8e6b0 68f913d bf8e6b0 d2c1af1 bf8e6b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 |
import streamlit as st
import os
import pathlib
import beir
from beir import util
from beir.datasets.data_loader import GenericDataLoader
import pytrec_eval
import pandas as pd
from collections import defaultdict
import json
import copy
import plotly.express as px
from constants import ALL_DATASETS, ALL_METRICS
from dataset_loading import get_dataset, load_run, load_local_qrels, load_local_corpus, load_local_queries
from analysis import create_boxplot_1df, create_boxplot_2df, create_boxplot_diff, get_model, prep_func
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
st.set_page_config(layout="wide")
if 'cur_instance_num' not in st.session_state:
st.session_state.cur_instance_num = -1
def update_details(run_details, run_score):
if run_score == 0:
run_details["none"] += 1
elif run_score == 1:
run_details["perfect"] += 1
else:
run_details["inbetween"] += 1
return run_details
def check_valid_args(run1_file, run2_file, dataset_name, qrels, queries, corpus):
if run1_file is not None and dataset_name not in ["", None, "custom"]:
return True
elif run1_file is not None and dataset_name == "custom":
if qrels is not None and queries is not None and corpus is not None:
return True
return False
def validate(config_option, file_loaded):
if config_option != "None" and file_loaded is None:
st.error("Please upload a file for " + config_option)
st.stop()
def combine(text_og, text_new, combine_type):
if combine_type == "None":
return text_og
elif combine_type == "Append":
return text_og + " <APPEND> " + text_new
elif combine_type == "Prepend":
return text_new + " <PREPEND> " + text_og
elif combine_type == "Replace":
return text_new
else:
raise ValueError("Invalid combine type")
with st.sidebar:
st.title("Options")
dataset_name = st.selectbox("Select a preloaded dataset or upload your own", tuple(ALL_DATASETS))
metric_name = st.selectbox("Select a metric", tuple(ALL_METRICS))
if dataset_name == "custom":
st.header("Upload corpus")
corpus_file = st.file_uploader("Choose a file", key="corpus")
corpus = load_local_corpus(corpus_file)
st.header("Upload queries")
queries_file = st.file_uploader("Choose a file", key="queries")
queries = load_local_queries(queries_file)
st.header("Upload qrels")
qrels_file = st.file_uploader("Choose a file", key="qrels")
qrels = load_local_qrels(qrels_file)
else:
qrels = None
queries = None
corpus = None
# sliderbar of how many Top N to choose
top_n = st.slider("Top N", 1, 100, 3)
x = st.header('Upload a run file')
run1_file = st.file_uploader("Choose a file", key="run1")
y = st.header("Upload a second run file")
run2_file = st.file_uploader("Choose a file", key="run2")
z = st.header("Analysis Options")
incorrect_only = st.checkbox("Show only incorrect instances", value=False)
one_better_than_two = st.checkbox("Show only instances where run 1 is better than run 2", value=False)
two_better_than_one = st.checkbox("Show only instances where run 2 is better than run 1", value=False)
use_model_saliency = st.checkbox("Use model saliency (slow!)", value=False)
if use_model_saliency:
# choose from a list of models
model_name = st.selectbox("Choose from a list of models", ["MonoT5"])
model, formatter = get_model("MonoT5")
get_saliency = prep_func(model, formatter)
advanced_options1 = st.checkbox("Show advanced options for Run 1", value=False)
doc_expansion1 = doc_expansion2 = None
query_expansion1 = query_expansion2 = None
run1_uses_query_expansion = "None"
run1_uses_doc_expansion = "None"
run2_uses_query_expansion = "None"
run2_uses_doc_expansion = "None"
if advanced_options1:
doc_header = st.header("Upload a Document Expansion file")
doc_expansion_file = st.file_uploader("Choose a file", key="doc_expansion")
if doc_expansion_file is not None:
doc_expansion1 = load_local_corpus(doc_expansion_file)
query_header = st.header("Upload a Query Expansion file")
query_expansion_file = st.file_uploader("Choose a file", key="query_expansion")
if query_expansion_file is not None:
query_expansion1 = load_local_queries(query_expansion_file)
run1_uses_query_expansion = st.selectbox("Type of query expansion used in run 1", ("None", "Append", "Prepend", "Replace"))
run1_uses_doc_expansion = st.selectbox("Type of document expansion used in run 1", ("None", "Append", "Prepend", "Replace"))
validate(run1_uses_query_expansion, query_expansion_file)
validate(run1_uses_doc_expansion, doc_expansion_file)
advanced_options2 = st.checkbox("Show advanced options for Run 2", value=False)
if advanced_options2:
doc_header = st.header("Upload a Document Expansion file")
doc_expansion_file = st.file_uploader("Choose a file", key="doc_expansion2")
if doc_expansion_file is not None:
doc_expansion2 = load_local_corpus(doc_expansion_file)
query_header = st.header("Upload a Query Expansion file")
query_expansion_file = st.file_uploader("Choose a file", key="query_expansion2")
if query_expansion_file is not None:
query_expansion2 = load_local_queries(query_expansion_file)
run2_uses_query_expansion = st.selectbox("Type of query expansion used in run 2", ("None", "Append", "Prepend", "Replace"))
run2_uses_doc_expansion = st.selectbox("Type of document expansion used in run 2", ("None", "Append", "Prepend", "Replace"))
validate(run2_uses_query_expansion, query_expansion_file)
validate(run2_uses_doc_expansion, doc_expansion_file)
# everything hinges on the run being uploaded, so do that first
# init_title = st.title("Upload Run and Choose Details")
if run1_file is not None:
run1, run1_pandas = load_run(run1_file)
# do everything, now that we have the run file
if check_valid_args(run1_file, run2_file, dataset_name, qrels, queries, corpus):
# init_title = st.title("Analysis")
# don't load these til a run is given
if dataset_name != "custom":
corpus, queries, qrels = get_dataset(dataset_name)
evaluator = pytrec_eval.RelevanceEvaluator(
copy.deepcopy(qrels), pytrec_eval.supported_measures)
results1 = evaluator.evaluate(run1) # dict of instance then metrics then values
if len(results1) == 0:
# alert and stop
st.error("Run file is empty")
st.stop()
if run2_file is not None:
run2, run2_pandas = load_run(run2_file)
# NOTE: will fail if run1 is not uploaded
evaluator2 = pytrec_eval.RelevanceEvaluator(
copy.deepcopy(qrels), pytrec_eval.supported_measures)
results2 = evaluator2.evaluate(run2)
col1, col2 = st.columns([1, 3], gap="large")
# incorrect = 0
is_better_run1_count = 0
is_better_run2_count = 0
is_same_count = 0
run1_details = {"none": 0, "perfect": 0, "inbetween": 0}
run2_details = {"none": 0, "perfect": 0, "inbetween": 0}
with col1:
st.title("Instances")
if run1_file is not None:
set_of_cols = set(run1_pandas.qid.tolist())
container_for_nav = st.container()
name_of_columns = sorted([item for item in set_of_cols])
instances_to_use = []
# st.divider()
for idx in range(len(name_of_columns)):
is_incorrect = False
is_better_run1 = False
is_better_run2 = False
run1_score = results1[str(name_of_columns[idx])][metric_name] if idx else 1
run1_details = update_details(run1_details, run1_score)
if run2_file is not None:
run2_score = results2[str(name_of_columns[idx])][metric_name] if idx else 1
run2_details = update_details(run2_details, run2_score)
if run1_score == 0 or run2_score == 0:
is_incorrect = True
if run1_score > run2_score:
is_better_run1_count += 1
is_better_run1 = True
elif run2_score > run1_score:
is_better_run2_count += 1
is_better_run2 = True
else:
is_same_count += 1
if not incorrect_only or is_incorrect:
if not one_better_than_two or is_better_run1:
if not two_better_than_one or is_better_run2:
# check = st.checkbox(f"{idx}. " + str(name_of_columns[idx]), key=f"{idx}check")
# st.divider()
instances_to_use.append(name_of_columns[idx])
else:
if run1_score == 0:
is_incorrect = True
if not incorrect_only or is_incorrect:
# check = st.checkbox(f"{idx}. " + str(name_of_columns[idx]), key=f"{idx}check")
# st.divider()
instances_to_use.append(name_of_columns[idx])
def sync_from_drop():
if st.session_state.selectbox_instance == "Overview":
st.session_state.number_of_col = -1
st.session_state.cur_instance_num = -1
else:
index_of_obj = name_of_columns.index(st.session_state.selectbox_instance)
# print("Index of obj: ", index_of_obj, type(index_of_obj))
st.session_state.number_of_col = index_of_obj
st.session_state.cur_instance_num = index_of_obj
def sync_from_number():
st.session_state.cur_instance_num = st.session_state.number_of_col
# print("Session state number of col: ", st.session_state.number_of_col, type(st.session_state.number_of_col))
if st.session_state.number_of_col == -1:
st.session_state.selectbox_instance = "Overview"
else:
st.session_state.selectbox_instance = name_of_columns[st.session_state.number_of_col]
number_of_col = container_for_nav.number_input(min_value=-1, step=1, max_value=len(instances_to_use), on_change=sync_from_number, label=f"Select instance by index (out of **{len(instances_to_use)}**)", key="number_of_col")
selectbox_instance = container_for_nav.selectbox("Select instance by ID", ["Overview"] + name_of_columns, on_change=sync_from_drop, key="selectbox_instance")
st.divider()
# make pie plot showing incorrect vs correct
st.header("Breakdown")
if run2_file is None:
plotly_pie_chart = px.pie(names=["Perfect", "Inbetween", "None"], values=[run1_details["perfect"], run1_details["inbetween"], run1_details["none"]])
st.write("Run 1 Scores")
plotly_pie_chart.update_traces(showlegend=False, selector=dict(type='pie'), textposition='inside', textinfo='percent+label')
st.plotly_chart(plotly_pie_chart, use_container_width=True)
else:
if st.checkbox("Show Run 1 vs Run 2", value=True):
plotly_pie_chart = px.pie(names=["Run 1 Better", "Run 2 Better", "Tied"], values=[is_better_run1_count, is_better_run2_count, is_same_count])
plotly_pie_chart.update_traces(showlegend=False, selector=dict(type='pie'), textposition='inside', textinfo='percent+label')
st.plotly_chart(plotly_pie_chart, use_container_width=True)
if st.checkbox("Show Run 1 Breakdown"):
plotly_pie_chart_run1 = px.pie(names=["Perfect", "Inbetween", "None"], values=[run1_details["perfect"], run1_details["inbetween"], run1_details["none"]])
plotly_pie_chart_run1.update_traces(showlegend=False, selector=dict(type='pie'), textposition='inside', textinfo='percent+label')
st.plotly_chart(plotly_pie_chart_run1, use_container_width=True)
if st.checkbox("Show Run 2 Breakdown"):
plotly_pie_chart_run2 = px.pie(names=["Perfect", "Inbetween", "None"], values=[run2_details["perfect"], run2_details["inbetween"], run2_details["none"]])
plotly_pie_chart_run2.update_traces(showlegend=False, selector=dict(type='pie'), textposition='inside', textinfo='percent+label')
st.plotly_chart(plotly_pie_chart_run2, use_container_width=True)
with col2:
# st.title(f"Information ({len(checkboxes) - 1}/{len(name_of_columns) - 1})")
### Only one run file
if run1_file is not None and run2_file is None:
# get instance number
inst_index = number_of_col
if inst_index >= 0:
inst_num = instances_to_use[inst_index - 1]
st.markdown("<h1 style='text-align: center; color: black;text-decoration: underline;'>Run 1</h1>", unsafe_allow_html=True)
container = st.container()
rank_col, score_col, id_col = container.columns([2,1,3])
id_col.metric("ID", inst_num)
score_col.metric(metric_name, results1[str(inst_num)][metric_name])
# st.subheader(f"ID")
# st.markdown(inst_num)
st.divider()
st.subheader(f"Query")
if run1_uses_query_expansion != "None":
show_orig_rel = st.checkbox("Show Original Query", key=f"{inst_index}reloriguery", value=False)
query_text_og = queries[str(inst_num)]
if query_expansion1 is not None and run1_uses_query_expansion != "None" and not show_orig_rel:
alt_text = query_expansion1[str(inst_num)]
query_text = combine(query_text_og, alt_text, run1_uses_query_expansion)
else:
query_text = query_text_og
st.markdown(query_text)
st.divider()
## Documents
# relevant
relevant_docs = list(qrels[str(inst_num)].keys())
doc_texts = [(doc_id, corpus[doc_id]["title"], corpus[doc_id]["text"]) for doc_id in relevant_docs]
st.subheader("Relevant Documents")
if doc_expansion1 is not None and run1_uses_doc_expansion != "None":
show_orig_rel = st.checkbox("Show Original Relevant Doc(s)", key=f"{inst_index}relorig", value=False)
for (docid, title, text) in doc_texts:
if doc_expansion1 is not None and run1_uses_doc_expansion != "None" and not show_orig_rel:
alt_text = doc_expansion1[docid]["text"]
text = combine(text, alt_text, run1_uses_doc_expansion)
if use_model_saliency:
if st.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency", value=False):
st.markdown(get_saliency(query_text, doc_texts),unsafe_allow_html=True)
else:
st.text_area(f"{docid}:", text)
else:
st.text_area(f"{docid}:", text)
pred_doc = run1_pandas[run1_pandas.doc_id.isin(relevant_docs)]
rank_pred = pred_doc[pred_doc.qid == str(inst_num)]["rank"].tolist()
# st.subheader("Ranked of Documents")
# st.markdown(f"Rank: {rank_pred}")
ranking_str = ",".join([str(item) for item in rank_pred]) if type(rank_pred) == list else str(rank_pred)
if ranking_str == "":
ranking_str = "--"
rank_col.metric(f"Rank of Relevant Doc(s)", ranking_str)
st.divider()
# top ranked
if st.checkbox('Show top ranked documents', key=f"{inst_index}top-1run"):
st.subheader("Top N Ranked Documents")
if doc_expansion1 is not None and run1_uses_doc_expansion != "None":
show_orig_rel_ranked = st.checkbox("Show Original Ranked Doc(s)", key=f"{inst_index}relorigdocs", value=False)
run1_top_n = run1_pandas[run1_pandas.qid == str(inst_num)][:top_n]
run1_top_n_docs = [corpus[str(doc_id)] for doc_id in run1_top_n.doc_id.tolist()]
if doc_expansion1 is not None and run1_uses_doc_expansion != "None" and not show_orig_rel_ranked:
run1_top_n_docs_alt = [doc_expansion1[str(doc_id)] for doc_id in run1_top_n.doc_id.tolist()]
for d_idx, doc in enumerate(run1_top_n_docs):
alt_text = run1_top_n_docs_alt[d_idx]["text"]
doc_text = combine(doc["text"], alt_text, run1_uses_doc_expansion)
if use_model_saliency:
if st.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency", value=False):
st.markdown(get_saliency(query_text, doc_text),unsafe_allow_html=True)
else:
st.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc_text, key=f"{inst_num}doc{d_idx}")
else:
st.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc_text, key=f"{inst_num}doc{d_idx}")
else:
for d_idx, doc in enumerate(run1_top_n_docs):
if use_model_saliency:
if st.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency{d_idx}ranked", value=False):
st.markdown(get_saliency(query_text, doc),unsafe_allow_html=True)
else:
st.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc["text"], key=f"{inst_num}doc{d_idx}")
else:
st.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc["text"], key=f"{inst_num}doc{d_idx}")
st.divider()
# none checked
elif inst_index < 0:
st.title("Overview")
st.subheader(f"Scores of {metric_name}")
plotly_chart = create_boxplot_1df(results1, metric_name)
st.plotly_chart(plotly_chart)
## Both run files available
elif run1_file is not None and run2_file is not None:
has_check = False
container_top = st.container()
# get instance number
inst_index = number_of_col
if inst_index >= 0:
inst_num = instances_to_use[inst_index]
col_run1, col_run2 = container_top.columns([1,1])
col_run1.markdown("<h1 style='text-align: center; color: black;text-decoration: underline;'>Run 1</h1>", unsafe_allow_html=True)
col_run2.markdown("<h1 style='text-align: center; color: black;text-decoration: underline;'>Run 2</h1>", unsafe_allow_html=True)
container_overview = st.container()
rank_col1, score_col1, rank_col2, score_col2 = container_overview.columns([2,1,2,1])
# id_col1.metric("", "")
score_col1.metric("Run 1 " + metric_name, results1[str(inst_num)][metric_name])
score_col2.metric("Run 2 " + metric_name, results2[str(inst_num)][metric_name])
st.divider()
st.subheader(f"Query")
container_two_query = st.container()
col_run1, col_run2 = container_two_query.columns(2, gap="medium")
query_text_og = queries[str(inst_num)]
if run1_uses_query_expansion != "None" and run2_uses_query_expansion != "None":
alt_text1 = query_expansion1[str(inst_num)]
alt_text2 = query_expansion2[str(inst_num)]
combined_text1 = combine(query_text_og, alt_text1, run1_uses_query_expansion)
combined_text2 = combine(query_text_og, alt_text2, run2_uses_query_expansion)
col_run1.markdown(combined_text1)
col_run2.markdown(combined_text2)
query_text1 = combined_text1
query_text2 = combined_text2
elif run1_uses_query_expansion != "None":
alt_text = query_expansion1[str(inst_num)]
combined_text1 = combine(query_text_og, alt_text, run1_uses_query_expansion)
col_run1.markdown(combined_text1)
col_run2.markdown(query_text_og)
query_text1 = combined_text1
query_text2 = query_text_og
elif run2_uses_query_expansion != "None":
alt_text = query_expansion2[str(inst_num)]
combined_text2 = combine(query_text_og, alt_text, run2_uses_query_expansion)
col_run1.markdown(query_text_og)
col_run2.markdown(combined_text2)
query_text1 = query_text_og
query_text2 = combined_text2
else:
query_text = query_text_og
col_run1.markdown(query_text)
col_run2.markdown(query_text)
query_text1 = query_text
query_text2 = query_text
st.divider()
## Documents
# relevant
st.subheader("Relevant Documents")
container_two_docs_rel = st.container()
col_run1, col_run2 = container_two_docs_rel.columns(2, gap="medium")
relevant_docs = list(qrels[str(inst_num)].keys())
doc_texts = [(doc_id, corpus[doc_id]["title"], corpus[doc_id]["text"]) for doc_id in relevant_docs]
if doc_expansion1 is not None and run1_uses_doc_expansion != "None":
show_orig_rel1 = col_run1.checkbox("Show Original Relevant Doc(s)", key=f"{inst_index}relorig_run1", value=False)
if doc_expansion2 is not None and run2_uses_doc_expansion != "None":
show_orig_rel2 = col_run2.checkbox("Show Original Relevant Doc(s)", key=f"{inst_index}relorig_run2", value=False)
for (docid, title, text) in doc_texts:
if doc_expansion1 is not None and run1_uses_doc_expansion != "None" and not show_orig_rel1:
alt_text = doc_expansion1[docid]["text"]
text = combine(text, alt_text, run1_uses_doc_expansion)
if use_model_saliency:
if col_run1.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency{docid}relevant", value=False):
col_run1.markdown(get_saliency(query_text1, text),unsafe_allow_html=True)
else:
col_run1.text_area(f"{docid}:", text, key=f"{inst_num}doc{docid}1")
else:
col_run1.text_area(f"{docid}:", text, key=f"{inst_num}doc{docid}1")
for (docid, title, text) in doc_texts:
if doc_expansion2 is not None and run2_uses_doc_expansion != "None" and not show_orig_rel2:
alt_text = doc_expansion2[docid]["text"]
text = combine(text, alt_text, run2_uses_doc_expansion)
if use_model_saliency:
if col_run2.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency{docid}relevant2", value=False):
col_run2.markdown(get_saliency(query_text2, text),unsafe_allow_html=True)
else:
col_run2.text_area(f"{docid}:", text, key=f"{inst_num}doc{docid}2")
else:
col_run2.text_area(f"{docid}:", text, key=f"{inst_num}doc{docid}2")
# top ranked
# NOTE: BEIR calls trec_eval which ranks by score, then doc_id for ties
# we have to fix that or we don't match the scores
pred_doc1 = run1_pandas[run1_pandas.qid == inst_num].sort_values(["score", "doc_id"], ascending=[False, False])
pred_doc1["rank_real"] = list(range(1, len(pred_doc1) + 1))
rank_pred1 = pred_doc1[pred_doc1.doc_id.isin(relevant_docs)]["rank_real"].tolist()
pred_doc2 = run2_pandas[run2_pandas.qid == inst_num].sort_values(["score", "doc_id"], ascending=[False, False])
pred_doc2["rank_real"] = list(range(1, len(pred_doc2) + 1))
rank_pred2 = pred_doc2[pred_doc2.doc_id.isin(relevant_docs)]["rank_real"].tolist()
# st.subheader("Ranked of Documents")
# st.markdown(f"Run 1 Rank: {rank_pred1}")
# st.markdown(f"Run 2 Rank: {rank_pred2}")
ranking_str = ",".join([str(item) for item in rank_pred1]) if type(rank_pred1) == list else str(rank_pred1)
if ranking_str == "":
ranking_str = "--"
rank_col1.metric("Run 1 " + f"Rank of Relevant Doc(s)", ranking_str)
ranking_str2 = ",".join([str(item) for item in rank_pred2]) if type(rank_pred2) == list else str(rank_pred2)
if ranking_str2 == "":
ranking_str2 = "--"
rank_col2.metric("Run 2 " + f"Rank of Relevant Doc(s)", ranking_str2)
st.divider()
container_two_docs_ranked = st.container()
col_run1, col_run2 = container_two_docs_ranked.columns(2, gap="medium")
if col_run1.checkbox('Show top ranked documents for Run 1', key=f"{inst_index}top-1run"):
col_run1.subheader("Top N Ranked Documents")
if doc_expansion1 is not None and run1_uses_doc_expansion != "None":
show_orig_rel_ranked1 = col_run1.checkbox("Show Original Ranked Doc(s)", key=f"{inst_index}relorigdocs1", value=False)
run1_top_n = run1_pandas[run1_pandas.qid == str(inst_num)].sort_values(["score", "doc_id"], ascending=[False, False])[:top_n]
run1_top_n_docs = [corpus[str(doc_id)] for doc_id in run1_top_n.doc_id.tolist()]
if doc_expansion1 is not None and run1_uses_doc_expansion != "None" and not show_orig_rel_ranked1:
run1_top_n_docs_alt = [doc_expansion1[str(doc_id)] for doc_id in run1_top_n.doc_id.tolist()]
for d_idx, doc in enumerate(run1_top_n_docs):
alt_text = run1_top_n_docs_alt[d_idx]["text"]
doc_text = combine(doc["text"], alt_text, run1_uses_doc_expansion)
if use_model_saliency:
if col_run1.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency{d_idx}ranked1", value=False):
col_run1.markdown(get_saliency(query_text1, doc_text),unsafe_allow_html=True)
else:
col_run1.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc_text, key=f"{inst_num}doc{d_idx}1")
else:
col_run1.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc_text, key=f"{inst_num}doc{d_idx}1")
else:
for d_idx, doc in enumerate(run1_top_n_docs):
if use_model_saliency:
if col_run1.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency{d_idx}ranked1", value=False):
col_run1.markdown(get_saliency(query_text1, doc),unsafe_allow_html=True)
else:
col_run1.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc["text"], key=f"{inst_num}doc{d_idx}1")
else:
col_run1.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc["text"], key=f"{inst_num}doc{d_idx}1")
if col_run2.checkbox('Show top ranked documents for Run 2', key=f"{inst_index}top-2run"):
col_run2.subheader("Top N Ranked Documents")
if doc_expansion2 is not None and run2_uses_doc_expansion != "None":
show_orig_rel_ranked2 = col_run2.checkbox("Show Original Ranked Doc(s)", key=f"{inst_index}relorigdocs2", value=False)
run2_top_n = run2_pandas[run2_pandas.qid == str(inst_num)].sort_values(["score", "doc_id"], ascending=[False, False])[:top_n]
run2_top_n_docs = [corpus[str(doc_id)] for doc_id in run2_top_n.doc_id.tolist()]
if doc_expansion2 is not None and run2_uses_doc_expansion != "None" and not show_orig_rel_ranked2:
run2_top_n_docs_alt = [doc_expansion2[str(doc_id)] for doc_id in run2_top_n.doc_id.tolist()]
for d_idx, doc in enumerate(run2_top_n_docs):
alt_text = run2_top_n_docs_alt[d_idx]["text"]
doc_text = combine(doc["text"], alt_text, run2_uses_doc_expansion)
if use_model_saliency:
if col_run2.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency{d_idx}ranked2", value=False):
col_run2.markdown(get_saliency(query_text2, doc_text),unsafe_allow_html=True)
else:
col_run2.text_area(f"{run2_top_n['doc_id'].iloc[d_idx]}: ", doc_text, key=f"{inst_num}doc{d_idx}2")
else:
col_run2.text_area(f"{run2_top_n['doc_id'].iloc[d_idx]}: ", doc_text, key=f"{inst_num}doc{d_idx}2")
else:
for d_idx, doc in enumerate(run2_top_n_docs):
if use_model_saliency:
if col_run2.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency{d_idx}ranked2", value=False):
col_run2.markdown(get_saliency(query_text2, doc),unsafe_allow_html=True)
else:
col_run2.text_area(f"{run2_top_n['doc_id'].iloc[d_idx]}: ", doc["text"], key=f"{inst_num}doc{d_idx}2")
else:
col_run2.text_area(f"{run2_top_n['doc_id'].iloc[d_idx]}: ", doc["text"], key=f"{inst_num}doc{d_idx}2")
st.divider()
else:
st.title("Overview")
st.subheader(f"Scores of {metric_name}")
fig = create_boxplot_2df(results1, results2, metric_name)
st.plotly_chart(fig)
st.subheader(f"Score Difference of {metric_name}")
fig_comp = create_boxplot_diff(results1, results2, metric_name)
st.plotly_chart(fig_comp)
else:
st.warning("Please choose a dataset and upload a run file. If you chose \"custom\" be sure that you uploaded all files (queries, corpus, qrels)") |