orionweller's picture
Update app.py
50dea48
raw
history blame
34.4 kB
import streamlit as st
import os
import pathlib
import beir
from beir import util
from beir.datasets.data_loader import GenericDataLoader
import pytrec_eval
import pandas as pd
from collections import defaultdict
import json
import copy
import plotly.express as px
from constants import ALL_DATASETS, ALL_METRICS
from dataset_loading import get_dataset, load_run, load_local_qrels, load_local_corpus, load_local_queries
from analysis import create_boxplot_1df, create_boxplot_2df, create_boxplot_diff, get_model, prep_func
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
st.set_page_config(layout="wide")
if 'cur_instance_num' not in st.session_state:
st.session_state.cur_instance_num = -1
def update_details(run_details, run_score):
if run_score == 0:
run_details["none"] += 1
elif run_score == 1:
run_details["perfect"] += 1
else:
run_details["inbetween"] += 1
return run_details
def check_valid_args(run1_file, run2_file, dataset_name, qrels, queries, corpus):
if run1_file is not None and dataset_name not in ["", None, "custom"]:
return True
elif run1_file is not None and dataset_name == "custom":
if qrels is not None and queries is not None and corpus is not None:
return True
return False
def validate(config_option, file_loaded):
if config_option != "None" and file_loaded is None:
st.error("Please upload a file for " + config_option)
st.stop()
def combine(text_og, text_new, combine_type):
if combine_type == "None":
return text_og
elif combine_type == "Append":
return text_og + " <APPEND> " + text_new
elif combine_type == "Prepend":
return text_new + " <PREPEND> " + text_og
elif combine_type == "Replace":
return text_new
else:
raise ValueError("Invalid combine type")
with st.sidebar:
st.title("Options")
dataset_name = st.selectbox("Select a preloaded dataset or upload your own (note: some datasets are large/slow)", tuple(ALL_DATASETS))
if st.checkbox("Choose fields (applies to IR_Datasets only)"):
input_fields_doc = st.text_input("Type the name of the doc fields to get, with commas (blank=all)")
if input_fields_doc in ["", None]:
input_fields_doc = None
input_fields_query = st.sidebar.text_input("Type the name of the query fields to get, with commas (blank=all)")
if input_fields_query in ["", None]:
input_fields_query = None
else:
input_fields_doc = None
input_fields_query = None
metric_name = st.selectbox("Select a metric", tuple(ALL_METRICS))
if dataset_name == "custom":
st.header("Upload corpus")
corpus_file = st.file_uploader("Choose a file", key="corpus")
corpus = load_local_corpus(corpus_file)
st.header("Upload queries")
queries_file = st.file_uploader("Choose a file", key="queries")
queries = load_local_queries(queries_file)
st.header("Upload qrels")
qrels_file = st.file_uploader("Choose a file", key="qrels")
qrels = load_local_qrels(qrels_file)
else:
qrels = None
queries = None
corpus = None
x = st.header('Upload a run file')
run1_file = st.file_uploader("Choose a file", key="run1")
y = st.header("Upload a second run file")
run2_file = st.file_uploader("Choose a file", key="run2")
z = st.header("Analysis Options")
# sliderbar of how many Top N to choose
top_n = st.slider("Top N Ranked Docs", 1, 100, 3)
n_relevant_docs = st.slider("Number of relevant docs", 1, 100, 3)
incorrect_only = st.checkbox("Show only incorrect instances", value=False)
one_better_than_two = st.checkbox("Show only instances where run 1 is better than run 2", value=False)
two_better_than_one = st.checkbox("Show only instances where run 2 is better than run 1", value=False)
use_model_saliency = st.checkbox("Use model saliency (slow!)", value=False)
if use_model_saliency:
# choose from a list of models
model_name = st.selectbox("Choose from a list of models", ["MonoT5-Small", "MonoT5-3B"])
model, formatter = get_model(model_name)
get_saliency = prep_func(model, formatter)
advanced_options1 = st.checkbox("Show advanced options for Run 1", value=False)
doc_expansion1 = doc_expansion2 = None
query_expansion1 = query_expansion2 = None
run1_uses_query_expansion = "None"
run1_uses_doc_expansion = "None"
run2_uses_query_expansion = "None"
run2_uses_doc_expansion = "None"
if advanced_options1:
doc_header = st.header("Upload a Document Expansion file")
doc_expansion_file = st.file_uploader("Choose a file", key="doc_expansion")
if doc_expansion_file is not None:
doc_expansion1 = load_local_corpus(doc_expansion_file)
query_header = st.header("Upload a Query Expansion file")
query_expansion_file = st.file_uploader("Choose a file", key="query_expansion")
if query_expansion_file is not None:
query_expansion1 = load_local_queries(query_expansion_file)
run1_uses_query_expansion = st.selectbox("Type of query expansion used in run 1", ("None", "Append", "Prepend", "Replace"))
run1_uses_doc_expansion = st.selectbox("Type of document expansion used in run 1", ("None", "Append", "Prepend", "Replace"))
validate(run1_uses_query_expansion, query_expansion_file)
validate(run1_uses_doc_expansion, doc_expansion_file)
advanced_options2 = st.checkbox("Show advanced options for Run 2", value=False)
if advanced_options2:
doc_header = st.header("Upload a Document Expansion file")
doc_expansion_file = st.file_uploader("Choose a file", key="doc_expansion2")
if doc_expansion_file is not None:
doc_expansion2 = load_local_corpus(doc_expansion_file)
query_header = st.header("Upload a Query Expansion file")
query_expansion_file = st.file_uploader("Choose a file", key="query_expansion2")
if query_expansion_file is not None:
query_expansion2 = load_local_queries(query_expansion_file)
run2_uses_query_expansion = st.selectbox("Type of query expansion used in run 2", ("None", "Append", "Prepend", "Replace"))
run2_uses_doc_expansion = st.selectbox("Type of document expansion used in run 2", ("None", "Append", "Prepend", "Replace"))
validate(run2_uses_query_expansion, query_expansion_file)
validate(run2_uses_doc_expansion, doc_expansion_file)
# everything hinges on the run being uploaded, so do that first
# init_title = st.title("Upload Run and Choose Details")
if run1_file is not None:
run1, run1_pandas = load_run(run1_file)
# do everything, now that we have the run file
if check_valid_args(run1_file, run2_file, dataset_name, qrels, queries, corpus):
# init_title = st.title("Analysis")
# don't load these til a run is given
if dataset_name != "custom":
corpus, queries, qrels = get_dataset(dataset_name, input_fields_doc, input_fields_query)
evaluator = pytrec_eval.RelevanceEvaluator(
copy.deepcopy(qrels), pytrec_eval.supported_measures)
results1 = evaluator.evaluate(run1) # dict of instance then metrics then values
average_run1_score = pytrec_eval.compute_aggregated_measure(metric_name, [query_measures[metric_name] for query_measures in results1.values()])
if len(results1) == 0:
# alert and stop
st.error("Run file is empty")
st.stop()
if run2_file is not None:
run2, run2_pandas = load_run(run2_file)
# NOTE: will fail if run1 is not uploaded
evaluator2 = pytrec_eval.RelevanceEvaluator(
copy.deepcopy(qrels), pytrec_eval.supported_measures)
results2 = evaluator2.evaluate(run2)
average_run2_score = pytrec_eval.compute_aggregated_measure(metric_name, [query_measures[metric_name] for query_measures in results2.values()])
col1, col2 = st.columns([1, 3], gap="large")
# incorrect = 0
is_better_run1_count = 0
is_better_run2_count = 0
is_same_count = 0
run1_details = {"none": 0, "perfect": 0, "inbetween": 0}
run2_details = {"none": 0, "perfect": 0, "inbetween": 0}
with col1:
st.title("Instances")
if run1_file is not None:
set_of_cols = set(run1_pandas.qid.tolist())
container_for_nav = st.container()
name_of_columns = sorted([item for item in set_of_cols])
instances_to_use = []
# st.divider()
for idx in range(len(name_of_columns)):
is_incorrect = False
is_better_run1 = False
is_better_run2 = False
run1_score = results1[str(name_of_columns[idx])][metric_name] if idx else 1
run1_details = update_details(run1_details, run1_score)
if run2_file is not None:
run2_score = results2[str(name_of_columns[idx])][metric_name] if idx else 1
run2_details = update_details(run2_details, run2_score)
if run1_score == 0 or run2_score == 0:
is_incorrect = True
if run1_score > run2_score:
is_better_run1_count += 1
is_better_run1 = True
elif run2_score > run1_score:
is_better_run2_count += 1
is_better_run2 = True
else:
is_same_count += 1
if not incorrect_only or is_incorrect:
if not one_better_than_two or is_better_run1:
if not two_better_than_one or is_better_run2:
# check = st.checkbox(f"{idx}. " + str(name_of_columns[idx]), key=f"{idx}check")
# st.divider()
instances_to_use.append(name_of_columns[idx])
else:
if run1_score == 0:
is_incorrect = True
if not incorrect_only or is_incorrect:
# check = st.checkbox(f"{idx}. " + str(name_of_columns[idx]), key=f"{idx}check")
# st.divider()
instances_to_use.append(name_of_columns[idx])
def sync_from_drop():
if st.session_state.selectbox_instance == "Overview":
st.session_state.number_of_col = -1
st.session_state.cur_instance_num = -1
else:
index_of_obj = name_of_columns.index(st.session_state.selectbox_instance)
# print("Index of obj: ", index_of_obj, type(index_of_obj))
st.session_state.number_of_col = index_of_obj
st.session_state.cur_instance_num = index_of_obj
def sync_from_number():
st.session_state.cur_instance_num = st.session_state.number_of_col
# print("Session state number of col: ", st.session_state.number_of_col, type(st.session_state.number_of_col))
if st.session_state.number_of_col == -1:
st.session_state.selectbox_instance = "Overview"
else:
st.session_state.selectbox_instance = name_of_columns[st.session_state.number_of_col]
number_of_col = container_for_nav.number_input(min_value=-1, step=1, max_value=len(instances_to_use) - 1, on_change=sync_from_number, label=f"Select instance by index (up to **{len(instances_to_use) - 1}**)", key="number_of_col")
selectbox_instance = container_for_nav.selectbox("Select instance by ID", ["Overview"] + name_of_columns, on_change=sync_from_drop, key="selectbox_instance")
st.divider()
# make pie plot showing incorrect vs correct
st.header("Breakdown")
if run2_file is None:
overall_scores_container = st.container()
left_score, right_score = overall_scores_container.columns([1, 1])
left_score.metric(label=f"Run 1 {metric_name}", value=round(average_run1_score, 3))
right_score.metric(label="#Q", value=len(results1))
plotly_pie_chart = px.pie(names=["Perfect", "Inbetween", "None"], values=[run1_details["perfect"], run1_details["inbetween"], run1_details["none"]])
st.write("Run 1 Scores")
plotly_pie_chart.update_traces(showlegend=False, selector=dict(type='pie'), textposition='inside', textinfo='percent+label')
st.plotly_chart(plotly_pie_chart, use_container_width=True)
else:
overall_scores_container = st.container()
left_score, right_score = overall_scores_container.columns([1, 1])
left_score.metric(label=f"Run 1 {metric_name}", value=round(average_run1_score, 3))
right_score.metric(label=f"Run 2 {metric_name}", value=round(average_run2_score, 3))
if st.checkbox("Show Run 1 vs Run 2", value=True):
plotly_pie_chart = px.pie(names=["Run 1 Better", "Run 2 Better", "Tied"], values=[is_better_run1_count, is_better_run2_count, is_same_count])
plotly_pie_chart.update_traces(showlegend=False, selector=dict(type='pie'), textposition='inside', textinfo='percent+label')
st.plotly_chart(plotly_pie_chart, use_container_width=True)
if st.checkbox("Show Run 1 Breakdown"):
plotly_pie_chart_run1 = px.pie(names=["Perfect", "Inbetween", "None"], values=[run1_details["perfect"], run1_details["inbetween"], run1_details["none"]])
plotly_pie_chart_run1.update_traces(showlegend=False, selector=dict(type='pie'), textposition='inside', textinfo='percent+label')
st.plotly_chart(plotly_pie_chart_run1, use_container_width=True)
if st.checkbox("Show Run 2 Breakdown"):
plotly_pie_chart_run2 = px.pie(names=["Perfect", "Inbetween", "None"], values=[run2_details["perfect"], run2_details["inbetween"], run2_details["none"]])
plotly_pie_chart_run2.update_traces(showlegend=False, selector=dict(type='pie'), textposition='inside', textinfo='percent+label')
st.plotly_chart(plotly_pie_chart_run2, use_container_width=True)
with col2:
# st.title(f"Information ({len(checkboxes) - 1}/{len(name_of_columns) - 1})")
### Only one run file
if run1_file is not None and run2_file is None:
# get instance number
inst_index = number_of_col
if inst_index >= 0:
inst_num = instances_to_use[inst_index - 1]
st.markdown("<h1 style='text-align: center; color: black;text-decoration: underline;'>Run 1</h1>", unsafe_allow_html=True)
container = st.container()
rank_col, score_col, id_col = container.columns([2,1,3])
id_col.metric("ID", inst_num)
score_col.metric(metric_name, results1[str(inst_num)][metric_name])
# st.subheader(f"ID")
# st.markdown(inst_num)
st.divider()
st.subheader(f"Query")
if run1_uses_query_expansion != "None":
show_orig_rel = st.checkbox("Show Original Query", key=f"{inst_index}reloriguery", value=False)
query_text_og = queries[str(inst_num)]
if query_expansion1 is not None and run1_uses_query_expansion != "None" and not show_orig_rel:
alt_text = query_expansion1[str(inst_num)]
query_text = combine(query_text_og, alt_text, run1_uses_query_expansion)
else:
query_text = query_text_og
st.markdown(query_text)
st.divider()
## Documents
# relevant
relevant_docs = list(qrels[str(inst_num)].keys())[:n_relevant_docs]
doc_texts = [(doc_id, corpus[doc_id]["title"] if "title" in corpus[doc_id] else "", corpus[doc_id]["text"]) for doc_id in relevant_docs]
st.subheader("Relevant Documents")
if doc_expansion1 is not None and run1_uses_doc_expansion != "None":
show_orig_rel = st.checkbox("Show Original Relevant Doc(s)", key=f"{inst_index}relorig", value=False)
for (docid, title, text) in doc_texts:
if doc_expansion1 is not None and run1_uses_doc_expansion != "None" and not show_orig_rel:
alt_text = doc_expansion1[docid]["text"]
text = combine(text, alt_text, run1_uses_doc_expansion)
if use_model_saliency:
if st.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency", value=False):
st.markdown(get_saliency(query_text, doc_texts),unsafe_allow_html=True)
else:
st.text_area(f"{docid}:", text)
else:
st.text_area(f"{docid}:", text)
# go through each of the relevant documents
ranks = []
for docid in relevant_docs:
pred_doc = run1_pandas[run1_pandas.doc_id.isin([docid])]
rank_pred = pred_doc[pred_doc.qid == str(inst_num)]
if rank_pred.empty:
ranks.append("-")
else:
ranks.append(rank_pred.iloc[0]["rank"])
# st.subheader("Ranked of Documents")
# st.markdown(f"Rank: {rank_pred}")
ranking_str = ",".join([str(item) for item in ranks])
if ranking_str == "":
ranking_str = "-"
rank_col.metric(f"Rank of Relevant Doc(s)", ranking_str)
# breakpoint()
st.divider()
# top ranked
if st.checkbox('Show top ranked documents', key=f"{inst_index}top-1run"):
st.subheader("Top N Ranked Documents")
if doc_expansion1 is not None and run1_uses_doc_expansion != "None":
show_orig_rel_ranked = st.checkbox("Show Original Ranked Doc(s)", key=f"{inst_index}relorigdocs", value=False)
run1_top_n = run1_pandas[run1_pandas.qid == str(inst_num)][:top_n]
run1_top_n_docs = [corpus[str(doc_id)] for doc_id in run1_top_n.doc_id.tolist()]
if doc_expansion1 is not None and run1_uses_doc_expansion != "None" and not show_orig_rel_ranked:
run1_top_n_docs_alt = [doc_expansion1[str(doc_id)] for doc_id in run1_top_n.doc_id.tolist()]
for d_idx, doc in enumerate(run1_top_n_docs):
alt_text = run1_top_n_docs_alt[d_idx]["text"]
doc_text = combine(doc["text"], alt_text, run1_uses_doc_expansion)
if use_model_saliency:
if st.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency", value=False):
st.markdown(get_saliency(query_text, doc_text),unsafe_allow_html=True)
else:
st.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc_text, key=f"{inst_num}doc{d_idx}")
else:
st.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc_text, key=f"{inst_num}doc{d_idx}")
else:
for d_idx, doc in enumerate(run1_top_n_docs):
if use_model_saliency:
if st.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency{d_idx}ranked", value=False):
st.markdown(get_saliency(query_text, doc),unsafe_allow_html=True)
else:
st.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc["text"], key=f"{inst_num}doc{d_idx}")
else:
st.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc["text"], key=f"{inst_num}doc{d_idx}")
st.divider()
# none checked
elif inst_index < 0:
st.title("Overview")
st.subheader(f"Scores of {metric_name}")
plotly_chart = create_boxplot_1df(results1, metric_name)
st.plotly_chart(plotly_chart)
## Both run files available
elif run1_file is not None and run2_file is not None:
has_check = False
container_top = st.container()
# get instance number
inst_index = number_of_col
if inst_index >= 0:
inst_num = instances_to_use[inst_index]
col_run1, col_run2 = container_top.columns([1,1])
col_run1.markdown("<h1 style='text-align: center; color: black;text-decoration: underline;'>Run 1</h1>", unsafe_allow_html=True)
col_run2.markdown("<h1 style='text-align: center; color: black;text-decoration: underline;'>Run 2</h1>", unsafe_allow_html=True)
container_overview = st.container()
rank_col1, score_col1, rank_col2, score_col2 = container_overview.columns([2,1,2,1])
# id_col1.metric("", "")
score_col1.metric("Run 1 " + metric_name, results1[str(inst_num)][metric_name])
score_col2.metric("Run 2 " + metric_name, results2[str(inst_num)][metric_name])
st.divider()
st.subheader(f"Query")
container_two_query = st.container()
col_run1, col_run2 = container_two_query.columns(2, gap="medium")
query_text_og = queries[str(inst_num)]
if run1_uses_query_expansion != "None" and run2_uses_query_expansion != "None":
alt_text1 = query_expansion1[str(inst_num)]
alt_text2 = query_expansion2[str(inst_num)]
combined_text1 = combine(query_text_og, alt_text1, run1_uses_query_expansion)
combined_text2 = combine(query_text_og, alt_text2, run2_uses_query_expansion)
col_run1.markdown(combined_text1)
col_run2.markdown(combined_text2)
query_text1 = combined_text1
query_text2 = combined_text2
elif run1_uses_query_expansion != "None":
alt_text = query_expansion1[str(inst_num)]
combined_text1 = combine(query_text_og, alt_text, run1_uses_query_expansion)
col_run1.markdown(combined_text1)
col_run2.markdown(query_text_og)
query_text1 = combined_text1
query_text2 = query_text_og
elif run2_uses_query_expansion != "None":
alt_text = query_expansion2[str(inst_num)]
combined_text2 = combine(query_text_og, alt_text, run2_uses_query_expansion)
col_run1.markdown(query_text_og)
col_run2.markdown(combined_text2)
query_text1 = query_text_og
query_text2 = combined_text2
else:
query_text = query_text_og
col_run1.markdown(query_text)
col_run2.markdown(query_text)
query_text1 = query_text
query_text2 = query_text
st.divider()
## Documents
# relevant
st.subheader("Relevant Documents")
container_two_docs_rel = st.container()
col_run1, col_run2 = container_two_docs_rel.columns(2, gap="medium")
relevant_docs = list(qrels[str(inst_num)].keys())[:n_relevant_docs]
relevant_score = {ind_doc_id: qrels[str(inst_num)][ind_doc_id] for ind_doc_id in relevant_docs}
doc_texts = [(doc_id, corpus[doc_id]["title"] if "title" in corpus[doc_id] else "", corpus[doc_id]["text"], relevant_score[doc_id]) for doc_id in relevant_docs]
if doc_expansion1 is not None and run1_uses_doc_expansion != "None":
show_orig_rel1 = col_run1.checkbox("Show Original Relevant Doc(s)", key=f"{inst_index}relorig_run1", value=False)
if doc_expansion2 is not None and run2_uses_doc_expansion != "None":
show_orig_rel2 = col_run2.checkbox("Show Original Relevant Doc(s)", key=f"{inst_index}relorig_run2", value=False)
for (docid, title, text, rel_score) in doc_texts:
if doc_expansion1 is not None and run1_uses_doc_expansion != "None" and not show_orig_rel1:
alt_text = doc_expansion1[docid]["text"]
text = combine(text, alt_text, run1_uses_doc_expansion)
if use_model_saliency:
if col_run1.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency{docid}relevant", value=False):
col_run1.markdown(get_saliency(query_text1, text),unsafe_allow_html=True)
else:
col_run1.text_area(f"{docid} (Rel: {rel_score}):", text, key=f"{inst_num}doc{docid}1")
else:
col_run1.text_area(f"{docid} (Rel: {rel_score}):", text, key=f"{inst_num}doc{docid}1")
for (docid, title, text, rel_score) in doc_texts:
if doc_expansion2 is not None and run2_uses_doc_expansion != "None" and not show_orig_rel2:
alt_text = doc_expansion2[docid]["text"] if docid in doc_expansion2 else "<NOT EXPANDED>"
text = combine(text, alt_text, run2_uses_doc_expansion)
if use_model_saliency:
if col_run2.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency{docid}relevant2", value=False):
col_run2.markdown(get_saliency(query_text2, text),unsafe_allow_html=True)
else:
col_run2.text_area(f"{docid}: (Rel: {rel_score})", text, key=f"{inst_num}doc{docid}2")
else:
col_run2.text_area(f"{docid}: (Rel: {rel_score})", text, key=f"{inst_num}doc{docid}2")
# top ranked
# NOTE: BEIR calls trec_eval which ranks by score, then doc_id for ties
# we have to fix that or we don't match the scores
ranks2 = []
for docid in relevant_docs:
pred_doc = run2_pandas[run2_pandas.doc_id.isin([docid])]
rank_pred = pred_doc[pred_doc.qid == str(inst_num)]
if rank_pred.empty:
ranks2.append("-")
else:
ranks2.append(rank_pred.iloc[0]["rank"])
# st.subheader("Ranked of Documents")
# st.markdown(f"Rank: {rank_pred}")
ranking_str2 = ",".join([str(item) for item in ranks2])
if ranking_str2 == "":
ranking_str2 = "-"
rank_col2.metric("Run 2 " + f"Rank of Relevant Doc(s)", ranking_str2)
ranks1 = []
for docid in relevant_docs:
pred_doc = run1_pandas[run1_pandas.doc_id.isin([docid])]
rank_pred = pred_doc[pred_doc.qid == str(inst_num)]
if rank_pred.empty:
ranks1.append("-")
else:
ranks1.append(rank_pred.iloc[0]["rank"])
# st.subheader("Ranked of Documents")
# st.markdown(f"Rank: {rank_pred}")
ranking_str1 = ",".join([str(item) for item in ranks1])
if ranking_str1 == "":
ranking_str1 = "-"
rank_col1.metric("Run 1 " + f"Rank of Relevant Doc(s)", ranking_str1)
st.divider()
container_two_docs_ranked = st.container()
col_run1, col_run2 = container_two_docs_ranked.columns(2, gap="medium")
if col_run1.checkbox('Show top ranked documents for Run 1', key=f"{inst_index}top-1run"):
col_run1.subheader("Top N Ranked Documents")
if doc_expansion1 is not None and run1_uses_doc_expansion != "None":
show_orig_rel_ranked1 = col_run1.checkbox("Show Original Ranked Doc(s)", key=f"{inst_index}relorigdocs1", value=False)
run1_top_n = run1_pandas[run1_pandas.qid == str(inst_num)].sort_values(["score", "doc_id"], ascending=[False, False])[:top_n]
run1_top_n_docs = [corpus[str(doc_id)] for doc_id in run1_top_n.doc_id.tolist()]
if doc_expansion1 is not None and run1_uses_doc_expansion != "None" and not show_orig_rel_ranked1:
run1_top_n_docs_alt = [doc_expansion1[str(doc_id)] for doc_id in run1_top_n.doc_id.tolist()]
for d_idx, doc in enumerate(run1_top_n_docs):
alt_text = run1_top_n_docs_alt[d_idx]["text"]
doc_text = combine(doc["text"], alt_text, run1_uses_doc_expansion)
if use_model_saliency:
if col_run1.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency{d_idx}ranked1", value=False):
col_run1.markdown(get_saliency(query_text1, doc_text),unsafe_allow_html=True)
else:
col_run1.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc_text, key=f"{inst_num}doc{d_idx}1")
else:
col_run1.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc_text, key=f"{inst_num}doc{d_idx}1")
else:
for d_idx, doc in enumerate(run1_top_n_docs):
if use_model_saliency:
if col_run1.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency{d_idx}ranked1", value=False):
col_run1.markdown(get_saliency(query_text1, doc),unsafe_allow_html=True)
else:
col_run1.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc["text"], key=f"{inst_num}doc{d_idx}1")
else:
col_run1.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc["text"], key=f"{inst_num}doc{d_idx}1")
if col_run2.checkbox('Show top ranked documents for Run 2', key=f"{inst_index}top-2run"):
col_run2.subheader("Top N Ranked Documents")
if doc_expansion2 is not None and run2_uses_doc_expansion != "None":
show_orig_rel_ranked2 = col_run2.checkbox("Show Original Ranked Doc(s)", key=f"{inst_index}relorigdocs2", value=False)
run2_top_n = run2_pandas[run2_pandas.qid == str(inst_num)].sort_values(["score", "doc_id"], ascending=[False, False])[:top_n]
run2_top_n_docs = [corpus[str(doc_id)] for doc_id in run2_top_n.doc_id.tolist()]
if doc_expansion2 is not None and run2_uses_doc_expansion != "None" and not show_orig_rel_ranked2:
run2_top_n_docs_alt = [doc_expansion2[str(doc_id)] for doc_id in run2_top_n.doc_id.tolist()]
for d_idx, doc in enumerate(run2_top_n_docs):
alt_text = run2_top_n_docs_alt[d_idx]["text"]
doc_text = combine(doc["text"], alt_text, run2_uses_doc_expansion)
if use_model_saliency:
if col_run2.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency{d_idx}ranked2", value=False):
col_run2.markdown(get_saliency(query_text2, doc_text),unsafe_allow_html=True)
else:
col_run2.text_area(f"{run2_top_n['doc_id'].iloc[d_idx]}: ", doc_text, key=f"{inst_num}doc{d_idx}2")
else:
col_run2.text_area(f"{run2_top_n['doc_id'].iloc[d_idx]}: ", doc_text, key=f"{inst_num}doc{d_idx}2")
else:
for d_idx, doc in enumerate(run2_top_n_docs):
if use_model_saliency:
if col_run2.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency{d_idx}ranked2", value=False):
col_run2.markdown(get_saliency(query_text2, doc),unsafe_allow_html=True)
else:
col_run2.text_area(f"{run2_top_n['doc_id'].iloc[d_idx]}: ", doc["text"], key=f"{inst_num}doc{d_idx}2")
else:
col_run2.text_area(f"{run2_top_n['doc_id'].iloc[d_idx]}: ", doc["text"], key=f"{inst_num}doc{d_idx}2")
st.divider()
else:
st.title("Overview")
st.subheader(f"Scores of {metric_name}")
fig = create_boxplot_2df(results1, results2, metric_name)
st.plotly_chart(fig)
st.subheader(f"Score Difference of {metric_name}")
fig_comp = create_boxplot_diff(results1, results2, metric_name)
st.plotly_chart(fig_comp)
else:
st.warning("Please choose a dataset and upload a run file. If you chose \"custom\" be sure that you uploaded all files (queries, corpus, qrels)")