Spaces:
Sleeping
Sleeping
Orion Weller
commited on
Commit
·
68ecf38
1
Parent(s):
a09b56d
updates, charts, ir_datasetes
Browse files- analysis.py +12 -5
- app.py +78 -33
- constants.py +4 -56
- dataset_loading.py +42 -12
- ir_dataset_metadata.py +486 -0
- ir_dataset_names.json +485 -0
- requirements.txt +2 -1
- scripts/collect_ir_dataset_names.py +26 -0
analysis.py
CHANGED
@@ -73,13 +73,20 @@ def get_words(words, importances):
|
|
73 |
|
74 |
@st.cache_resource
|
75 |
def get_model(model_name: str):
|
76 |
-
if
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
def formatter(query, doc):
|
82 |
return f"Query: {query} Document: {doc} Relevant:"
|
|
|
83 |
|
84 |
return pipe, formatter
|
85 |
|
|
|
73 |
|
74 |
@st.cache_resource
|
75 |
def get_model(model_name: str):
|
76 |
+
if "MonoT5" in model_name:
|
77 |
+
if model_name == "MonoT5-Small":
|
78 |
+
pipe = pipeline('text2text-generation',
|
79 |
+
model='castorini/monot5-small-msmarco-10k',
|
80 |
+
tokenizer='castorini/monot5-small-msmarco-10k',
|
81 |
+
device='cpu')
|
82 |
+
elif model_name == "MonoT5-3B":
|
83 |
+
pipe = pipeline('text2text-generation',
|
84 |
+
model='castorini/monot5-3b-msmarco-10k',
|
85 |
+
tokenizer='castorini/monot5-3b-msmarco-10k',
|
86 |
+
device='cpu')
|
87 |
def formatter(query, doc):
|
88 |
return f"Query: {query} Document: {doc} Relevant:"
|
89 |
+
|
90 |
|
91 |
return pipe, formatter
|
92 |
|
app.py
CHANGED
@@ -63,7 +63,18 @@ def combine(text_og, text_new, combine_type):
|
|
63 |
|
64 |
with st.sidebar:
|
65 |
st.title("Options")
|
66 |
-
dataset_name = st.selectbox("Select a preloaded dataset or upload your own", tuple(ALL_DATASETS))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
metric_name = st.selectbox("Select a metric", tuple(ALL_METRICS))
|
68 |
|
69 |
if dataset_name == "custom":
|
@@ -81,22 +92,24 @@ with st.sidebar:
|
|
81 |
queries = None
|
82 |
corpus = None
|
83 |
|
84 |
-
|
85 |
-
top_n = st.slider("Top N", 1, 100, 3)
|
86 |
x = st.header('Upload a run file')
|
87 |
run1_file = st.file_uploader("Choose a file", key="run1")
|
88 |
y = st.header("Upload a second run file")
|
89 |
run2_file = st.file_uploader("Choose a file", key="run2")
|
90 |
|
91 |
z = st.header("Analysis Options")
|
|
|
|
|
|
|
92 |
incorrect_only = st.checkbox("Show only incorrect instances", value=False)
|
93 |
one_better_than_two = st.checkbox("Show only instances where run 1 is better than run 2", value=False)
|
94 |
two_better_than_one = st.checkbox("Show only instances where run 2 is better than run 1", value=False)
|
95 |
use_model_saliency = st.checkbox("Use model saliency (slow!)", value=False)
|
96 |
if use_model_saliency:
|
97 |
# choose from a list of models
|
98 |
-
model_name = st.selectbox("Choose from a list of models", ["MonoT5"])
|
99 |
-
model, formatter = get_model(
|
100 |
get_saliency = prep_func(model, formatter)
|
101 |
|
102 |
|
@@ -150,11 +163,12 @@ if check_valid_args(run1_file, run2_file, dataset_name, qrels, queries, corpus):
|
|
150 |
# init_title = st.title("Analysis")
|
151 |
# don't load these til a run is given
|
152 |
if dataset_name != "custom":
|
153 |
-
corpus, queries, qrels = get_dataset(dataset_name)
|
154 |
|
155 |
evaluator = pytrec_eval.RelevanceEvaluator(
|
156 |
copy.deepcopy(qrels), pytrec_eval.supported_measures)
|
157 |
results1 = evaluator.evaluate(run1) # dict of instance then metrics then values
|
|
|
158 |
if len(results1) == 0:
|
159 |
# alert and stop
|
160 |
st.error("Run file is empty")
|
@@ -166,6 +180,8 @@ if check_valid_args(run1_file, run2_file, dataset_name, qrels, queries, corpus):
|
|
166 |
evaluator2 = pytrec_eval.RelevanceEvaluator(
|
167 |
copy.deepcopy(qrels), pytrec_eval.supported_measures)
|
168 |
results2 = evaluator2.evaluate(run2)
|
|
|
|
|
169 |
|
170 |
col1, col2 = st.columns([1, 3], gap="large")
|
171 |
|
@@ -242,17 +258,29 @@ if check_valid_args(run1_file, run2_file, dataset_name, qrels, queries, corpus):
|
|
242 |
st.session_state.selectbox_instance = name_of_columns[st.session_state.number_of_col]
|
243 |
|
244 |
|
245 |
-
number_of_col = container_for_nav.number_input(min_value=-1, step=1, max_value=len(instances_to_use), on_change=sync_from_number, label=f"Select instance by index (
|
246 |
selectbox_instance = container_for_nav.selectbox("Select instance by ID", ["Overview"] + name_of_columns, on_change=sync_from_drop, key="selectbox_instance")
|
247 |
st.divider()
|
248 |
# make pie plot showing incorrect vs correct
|
249 |
st.header("Breakdown")
|
|
|
|
|
250 |
if run2_file is None:
|
|
|
|
|
|
|
|
|
|
|
251 |
plotly_pie_chart = px.pie(names=["Perfect", "Inbetween", "None"], values=[run1_details["perfect"], run1_details["inbetween"], run1_details["none"]])
|
252 |
st.write("Run 1 Scores")
|
253 |
plotly_pie_chart.update_traces(showlegend=False, selector=dict(type='pie'), textposition='inside', textinfo='percent+label')
|
254 |
st.plotly_chart(plotly_pie_chart, use_container_width=True)
|
255 |
else:
|
|
|
|
|
|
|
|
|
|
|
256 |
if st.checkbox("Show Run 1 vs Run 2", value=True):
|
257 |
plotly_pie_chart = px.pie(names=["Run 1 Better", "Run 2 Better", "Tied"], values=[is_better_run1_count, is_better_run2_count, is_same_count])
|
258 |
plotly_pie_chart.update_traces(showlegend=False, selector=dict(type='pie'), textposition='inside', textinfo='percent+label')
|
@@ -307,8 +335,8 @@ if check_valid_args(run1_file, run2_file, dataset_name, qrels, queries, corpus):
|
|
307 |
|
308 |
## Documents
|
309 |
# relevant
|
310 |
-
relevant_docs = list(qrels[str(inst_num)].keys())
|
311 |
-
doc_texts = [(doc_id, corpus[doc_id]["title"], corpus[doc_id]["text"]) for doc_id in relevant_docs]
|
312 |
st.subheader("Relevant Documents")
|
313 |
if doc_expansion1 is not None and run1_uses_doc_expansion != "None":
|
314 |
show_orig_rel = st.checkbox("Show Original Relevant Doc(s)", key=f"{inst_index}relorig", value=False)
|
@@ -328,14 +356,22 @@ if check_valid_args(run1_file, run2_file, dataset_name, qrels, queries, corpus):
|
|
328 |
st.text_area(f"{docid}:", text)
|
329 |
|
330 |
|
331 |
-
|
332 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
# st.subheader("Ranked of Documents")
|
334 |
# st.markdown(f"Rank: {rank_pred}")
|
335 |
-
ranking_str = ",".join([str(item) for item in
|
336 |
if ranking_str == "":
|
337 |
-
ranking_str = "
|
338 |
rank_col.metric(f"Rank of Relevant Doc(s)", ranking_str)
|
|
|
339 |
|
340 |
|
341 |
st.divider()
|
@@ -446,8 +482,8 @@ if check_valid_args(run1_file, run2_file, dataset_name, qrels, queries, corpus):
|
|
446 |
st.subheader("Relevant Documents")
|
447 |
container_two_docs_rel = st.container()
|
448 |
col_run1, col_run2 = container_two_docs_rel.columns(2, gap="medium")
|
449 |
-
relevant_docs = list(qrels[str(inst_num)].keys())
|
450 |
-
doc_texts = [(doc_id, corpus[doc_id]["title"], corpus[doc_id]["text"]) for doc_id in relevant_docs]
|
451 |
|
452 |
if doc_expansion1 is not None and run1_uses_doc_expansion != "None":
|
453 |
show_orig_rel1 = col_run1.checkbox("Show Original Relevant Doc(s)", key=f"{inst_index}relorig_run1", value=False)
|
@@ -483,30 +519,39 @@ if check_valid_args(run1_file, run2_file, dataset_name, qrels, queries, corpus):
|
|
483 |
# top ranked
|
484 |
# NOTE: BEIR calls trec_eval which ranks by score, then doc_id for ties
|
485 |
# we have to fix that or we don't match the scores
|
486 |
-
pred_doc1 = run1_pandas[run1_pandas.qid == inst_num].sort_values(["score", "doc_id"], ascending=[False, False])
|
487 |
-
pred_doc1["rank_real"] = list(range(1, len(pred_doc1) + 1))
|
488 |
-
rank_pred1 = pred_doc1[pred_doc1.doc_id.isin(relevant_docs)]["rank_real"].tolist()
|
489 |
-
|
490 |
-
pred_doc2 = run2_pandas[run2_pandas.qid == inst_num].sort_values(["score", "doc_id"], ascending=[False, False])
|
491 |
-
pred_doc2["rank_real"] = list(range(1, len(pred_doc2) + 1))
|
492 |
-
rank_pred2 = pred_doc2[pred_doc2.doc_id.isin(relevant_docs)]["rank_real"].tolist()
|
493 |
-
|
494 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
495 |
# st.subheader("Ranked of Documents")
|
496 |
-
# st.markdown(f"
|
497 |
-
|
498 |
-
|
499 |
-
ranking_str = ",".join([str(item) for item in rank_pred1]) if type(rank_pred1) == list else str(rank_pred1)
|
500 |
-
if ranking_str == "":
|
501 |
-
ranking_str = "--"
|
502 |
-
rank_col1.metric("Run 1 " + f"Rank of Relevant Doc(s)", ranking_str)
|
503 |
-
|
504 |
-
ranking_str2 = ",".join([str(item) for item in rank_pred2]) if type(rank_pred2) == list else str(rank_pred2)
|
505 |
if ranking_str2 == "":
|
506 |
-
ranking_str2 = "
|
507 |
rank_col2.metric("Run 2 " + f"Rank of Relevant Doc(s)", ranking_str2)
|
508 |
|
509 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
510 |
st.divider()
|
511 |
|
512 |
|
|
|
63 |
|
64 |
with st.sidebar:
|
65 |
st.title("Options")
|
66 |
+
dataset_name = st.selectbox("Select a preloaded dataset or upload your own (note: some datasets are large/slow)", tuple(ALL_DATASETS))
|
67 |
+
if st.checkbox("Choose fields (applies to IR_Datasets only)"):
|
68 |
+
input_fields_doc = st.text_input("Type the name of the doc fields to get, with commas (blank=all)")
|
69 |
+
if input_fields_doc in ["", None]:
|
70 |
+
input_fields_doc = None
|
71 |
+
input_fields_query = st.sidebar.text_input("Type the name of the query fields to get, with commas (blank=all)")
|
72 |
+
if input_fields_query in ["", None]:
|
73 |
+
input_fields_query = None
|
74 |
+
else:
|
75 |
+
input_fields_doc = None
|
76 |
+
input_fields_query = None
|
77 |
+
|
78 |
metric_name = st.selectbox("Select a metric", tuple(ALL_METRICS))
|
79 |
|
80 |
if dataset_name == "custom":
|
|
|
92 |
queries = None
|
93 |
corpus = None
|
94 |
|
95 |
+
|
|
|
96 |
x = st.header('Upload a run file')
|
97 |
run1_file = st.file_uploader("Choose a file", key="run1")
|
98 |
y = st.header("Upload a second run file")
|
99 |
run2_file = st.file_uploader("Choose a file", key="run2")
|
100 |
|
101 |
z = st.header("Analysis Options")
|
102 |
+
# sliderbar of how many Top N to choose
|
103 |
+
top_n = st.slider("Top N Ranked Docs", 1, 100, 3)
|
104 |
+
n_relevant_docs = st.slider("Number of relevant docs", 1, 100, 3)
|
105 |
incorrect_only = st.checkbox("Show only incorrect instances", value=False)
|
106 |
one_better_than_two = st.checkbox("Show only instances where run 1 is better than run 2", value=False)
|
107 |
two_better_than_one = st.checkbox("Show only instances where run 2 is better than run 1", value=False)
|
108 |
use_model_saliency = st.checkbox("Use model saliency (slow!)", value=False)
|
109 |
if use_model_saliency:
|
110 |
# choose from a list of models
|
111 |
+
model_name = st.selectbox("Choose from a list of models", ["MonoT5-Small", "MonoT5-3B"])
|
112 |
+
model, formatter = get_model(model_name)
|
113 |
get_saliency = prep_func(model, formatter)
|
114 |
|
115 |
|
|
|
163 |
# init_title = st.title("Analysis")
|
164 |
# don't load these til a run is given
|
165 |
if dataset_name != "custom":
|
166 |
+
corpus, queries, qrels = get_dataset(dataset_name, input_fields_doc, input_fields_query)
|
167 |
|
168 |
evaluator = pytrec_eval.RelevanceEvaluator(
|
169 |
copy.deepcopy(qrels), pytrec_eval.supported_measures)
|
170 |
results1 = evaluator.evaluate(run1) # dict of instance then metrics then values
|
171 |
+
average_run1_score = pytrec_eval.compute_aggregated_measure(metric_name, [query_measures[metric_name] for query_measures in results1.values()])
|
172 |
if len(results1) == 0:
|
173 |
# alert and stop
|
174 |
st.error("Run file is empty")
|
|
|
180 |
evaluator2 = pytrec_eval.RelevanceEvaluator(
|
181 |
copy.deepcopy(qrels), pytrec_eval.supported_measures)
|
182 |
results2 = evaluator2.evaluate(run2)
|
183 |
+
average_run2_score = pytrec_eval.compute_aggregated_measure(metric_name, [query_measures[metric_name] for query_measures in results2.values()])
|
184 |
+
|
185 |
|
186 |
col1, col2 = st.columns([1, 3], gap="large")
|
187 |
|
|
|
258 |
st.session_state.selectbox_instance = name_of_columns[st.session_state.number_of_col]
|
259 |
|
260 |
|
261 |
+
number_of_col = container_for_nav.number_input(min_value=-1, step=1, max_value=len(instances_to_use) - 1, on_change=sync_from_number, label=f"Select instance by index (up to **{len(instances_to_use) - 1}**)", key="number_of_col")
|
262 |
selectbox_instance = container_for_nav.selectbox("Select instance by ID", ["Overview"] + name_of_columns, on_change=sync_from_drop, key="selectbox_instance")
|
263 |
st.divider()
|
264 |
# make pie plot showing incorrect vs correct
|
265 |
st.header("Breakdown")
|
266 |
+
|
267 |
+
|
268 |
if run2_file is None:
|
269 |
+
overall_scores_container = st.container()
|
270 |
+
left_score, right_score = overall_scores_container.columns([1, 1])
|
271 |
+
left_score.metric(label=f"Run 1 {metric_name}", value=round(average_run1_score, 3))
|
272 |
+
right_score.metric(label="#Q", value=len(results1))
|
273 |
+
|
274 |
plotly_pie_chart = px.pie(names=["Perfect", "Inbetween", "None"], values=[run1_details["perfect"], run1_details["inbetween"], run1_details["none"]])
|
275 |
st.write("Run 1 Scores")
|
276 |
plotly_pie_chart.update_traces(showlegend=False, selector=dict(type='pie'), textposition='inside', textinfo='percent+label')
|
277 |
st.plotly_chart(plotly_pie_chart, use_container_width=True)
|
278 |
else:
|
279 |
+
overall_scores_container = st.container()
|
280 |
+
left_score, right_score = overall_scores_container.columns([1, 1])
|
281 |
+
left_score.metric(label=f"Run 1 {metric_name}", value=round(average_run1_score, 3))
|
282 |
+
right_score.metric(label=f"Run 2 {metric_name}", value=round(average_run2_score, 3))
|
283 |
+
|
284 |
if st.checkbox("Show Run 1 vs Run 2", value=True):
|
285 |
plotly_pie_chart = px.pie(names=["Run 1 Better", "Run 2 Better", "Tied"], values=[is_better_run1_count, is_better_run2_count, is_same_count])
|
286 |
plotly_pie_chart.update_traces(showlegend=False, selector=dict(type='pie'), textposition='inside', textinfo='percent+label')
|
|
|
335 |
|
336 |
## Documents
|
337 |
# relevant
|
338 |
+
relevant_docs = list(qrels[str(inst_num)].keys())[:n_relevant_docs]
|
339 |
+
doc_texts = [(doc_id, corpus[doc_id]["title"] if "title" in corpus[doc_id] else "", corpus[doc_id]["text"]) for doc_id in relevant_docs]
|
340 |
st.subheader("Relevant Documents")
|
341 |
if doc_expansion1 is not None and run1_uses_doc_expansion != "None":
|
342 |
show_orig_rel = st.checkbox("Show Original Relevant Doc(s)", key=f"{inst_index}relorig", value=False)
|
|
|
356 |
st.text_area(f"{docid}:", text)
|
357 |
|
358 |
|
359 |
+
# go through each of the relevant documents
|
360 |
+
ranks = []
|
361 |
+
for docid in relevant_docs:
|
362 |
+
pred_doc = run1_pandas[run1_pandas.doc_id.isin([docid])]
|
363 |
+
rank_pred = pred_doc[pred_doc.qid == str(inst_num)]
|
364 |
+
if rank_pred.empty:
|
365 |
+
ranks.append("-")
|
366 |
+
else:
|
367 |
+
ranks.append(rank_pred.iloc[0]["rank"])
|
368 |
# st.subheader("Ranked of Documents")
|
369 |
# st.markdown(f"Rank: {rank_pred}")
|
370 |
+
ranking_str = ",".join([str(item) for item in ranks])
|
371 |
if ranking_str == "":
|
372 |
+
ranking_str = "-"
|
373 |
rank_col.metric(f"Rank of Relevant Doc(s)", ranking_str)
|
374 |
+
# breakpoint()
|
375 |
|
376 |
|
377 |
st.divider()
|
|
|
482 |
st.subheader("Relevant Documents")
|
483 |
container_two_docs_rel = st.container()
|
484 |
col_run1, col_run2 = container_two_docs_rel.columns(2, gap="medium")
|
485 |
+
relevant_docs = list(qrels[str(inst_num)].keys())[:n_relevant_docs]
|
486 |
+
doc_texts = [(doc_id, corpus[doc_id]["title"] if "title" in corpus[doc_id] else "", corpus[doc_id]["text"]) for doc_id in relevant_docs]
|
487 |
|
488 |
if doc_expansion1 is not None and run1_uses_doc_expansion != "None":
|
489 |
show_orig_rel1 = col_run1.checkbox("Show Original Relevant Doc(s)", key=f"{inst_index}relorig_run1", value=False)
|
|
|
519 |
# top ranked
|
520 |
# NOTE: BEIR calls trec_eval which ranks by score, then doc_id for ties
|
521 |
# we have to fix that or we don't match the scores
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
522 |
|
523 |
+
ranks2 = []
|
524 |
+
for docid in relevant_docs:
|
525 |
+
pred_doc = run2_pandas[run2_pandas.doc_id.isin([docid])]
|
526 |
+
rank_pred = pred_doc[pred_doc.qid == str(inst_num)]
|
527 |
+
if rank_pred.empty:
|
528 |
+
ranks2.append("-")
|
529 |
+
else:
|
530 |
+
ranks2.append(rank_pred.iloc[0]["rank"])
|
531 |
# st.subheader("Ranked of Documents")
|
532 |
+
# st.markdown(f"Rank: {rank_pred}")
|
533 |
+
ranking_str2 = ",".join([str(item) for item in ranks2])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
534 |
if ranking_str2 == "":
|
535 |
+
ranking_str2 = "-"
|
536 |
rank_col2.metric("Run 2 " + f"Rank of Relevant Doc(s)", ranking_str2)
|
537 |
|
538 |
|
539 |
+
ranks1 = []
|
540 |
+
for docid in relevant_docs:
|
541 |
+
pred_doc = run1_pandas[run1_pandas.doc_id.isin([docid])]
|
542 |
+
rank_pred = pred_doc[pred_doc.qid == str(inst_num)]
|
543 |
+
if rank_pred.empty:
|
544 |
+
ranks1.append("-")
|
545 |
+
else:
|
546 |
+
ranks1.append(rank_pred.iloc[0]["rank"])
|
547 |
+
# st.subheader("Ranked of Documents")
|
548 |
+
# st.markdown(f"Rank: {rank_pred}")
|
549 |
+
ranking_str1 = ",".join([str(item) for item in ranks1])
|
550 |
+
if ranking_str1 == "":
|
551 |
+
ranking_str1 = "-"
|
552 |
+
rank_col1.metric("Run 1 " + f"Rank of Relevant Doc(s)", ranking_str1)
|
553 |
+
|
554 |
+
|
555 |
st.divider()
|
556 |
|
557 |
|
constants.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
|
2 |
ALL_METRICS = [
|
3 |
"ndcg_cut_10",
|
@@ -77,66 +79,12 @@ BEIR = [
|
|
77 |
]
|
78 |
|
79 |
|
80 |
-
IR_DATASETS = [
|
81 |
-
"antique",
|
82 |
-
"aol_ia",
|
83 |
-
"aquaint",
|
84 |
-
"argsme",
|
85 |
-
"c4",
|
86 |
-
"car",
|
87 |
-
"clinicaltrials",
|
88 |
-
"clirmatrix",
|
89 |
-
"clueweb09",
|
90 |
-
"clueweb12",
|
91 |
-
"codec",
|
92 |
-
"cord19",
|
93 |
-
"cranfield",
|
94 |
-
"disks45",
|
95 |
-
"dpr_w100",
|
96 |
-
"codesearchnet",
|
97 |
-
"gov",
|
98 |
-
"gov2",
|
99 |
-
"highwire",
|
100 |
-
"istella22",
|
101 |
-
"kilt",
|
102 |
-
"lotte",
|
103 |
-
"medline",
|
104 |
-
"mmarco",
|
105 |
-
"mr_tydi",
|
106 |
-
"msmarco_document",
|
107 |
-
"msmarco_document_v2",
|
108 |
-
"msmarco_passage",
|
109 |
-
"msmarco_passage_v2",
|
110 |
-
"msmarco_qna",
|
111 |
-
"neumarco",
|
112 |
-
"nfcorpus",
|
113 |
-
"natural_questions",
|
114 |
-
"nyt",
|
115 |
-
"pmc",
|
116 |
-
"touche_image",
|
117 |
-
"touche",
|
118 |
-
"trec_arabic",
|
119 |
-
"trec_mandarin",
|
120 |
-
"trec_spanish",
|
121 |
-
"trec_robust04",
|
122 |
-
"trec_tot",
|
123 |
-
"tripclick",
|
124 |
-
"tweets2013_ia",
|
125 |
-
"vaswani",
|
126 |
-
"wapo",
|
127 |
-
"wikiclir",
|
128 |
-
"wikir",
|
129 |
-
"trec_fair",
|
130 |
-
"trec_cast",
|
131 |
-
"hc4",
|
132 |
-
"neuclir",
|
133 |
-
"sara",
|
134 |
-
]
|
135 |
-
|
136 |
LOCAL_DATASETS = [
|
137 |
"gooaq_technical",
|
138 |
"codesearch_py",
|
139 |
]
|
|
|
|
|
140 |
|
141 |
|
142 |
ALL_DATASETS = ["", "custom"] + LOCAL_DATASETS + BEIR + IR_DATASETS
|
|
|
1 |
+
from ir_dataset_metadata import IR_DATASETS
|
2 |
+
|
3 |
|
4 |
ALL_METRICS = [
|
5 |
"ndcg_cut_10",
|
|
|
79 |
]
|
80 |
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
LOCAL_DATASETS = [
|
83 |
"gooaq_technical",
|
84 |
"codesearch_py",
|
85 |
]
|
86 |
+
|
87 |
+
|
88 |
|
89 |
|
90 |
ALL_DATASETS = ["", "custom"] + LOCAL_DATASETS + BEIR + IR_DATASETS
|
dataset_loading.py
CHANGED
@@ -104,8 +104,12 @@ def load_run(f_run):
|
|
104 |
run_pandas.qid = run_pandas.qid.astype(str)
|
105 |
run_pandas["rank"] = run_pandas["rank"].astype(int)
|
106 |
run_pandas.score = run_pandas.score.astype(float)
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
109 |
return new_run, run_pandas
|
110 |
|
111 |
|
@@ -133,7 +137,7 @@ def load_jsonl(f):
|
|
133 |
return did2text, sub_did2text
|
134 |
|
135 |
|
136 |
-
@st.cache_data
|
137 |
def get_beir(dataset: str):
|
138 |
url = "https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/{}.zip".format(dataset)
|
139 |
out_dir = os.path.join(pathlib.Path(__file__).parent.absolute(), "datasets")
|
@@ -141,27 +145,53 @@ def get_beir(dataset: str):
|
|
141 |
return GenericDataLoader(data_folder=data_path).load(split="test")
|
142 |
|
143 |
|
144 |
-
@st.cache_data
|
145 |
-
def get_ir_datasets(dataset_name: str):
|
146 |
dataset = ir_datasets.load(dataset_name)
|
147 |
queries = {}
|
148 |
for qid, query in dataset.queries_iter():
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
# return corpus, queries, qrels
|
153 |
-
return
|
154 |
|
155 |
|
156 |
-
@st.cache_data
|
157 |
-
def get_dataset(dataset_name: str):
|
|
|
|
|
|
|
|
|
|
|
158 |
if dataset_name == "":
|
159 |
return {}, {}, {}
|
160 |
|
161 |
if dataset_name in BEIR:
|
162 |
return get_beir(dataset_name)
|
163 |
elif dataset_name in IR_DATASETS:
|
164 |
-
return get_ir_datasets(dataset_name)
|
165 |
elif dataset_name in LOCAL_DATASETS:
|
166 |
base_path = f"local_datasets/{dataset_name}"
|
167 |
corpus_file = open(f"{base_path}/corpus.jsonl", "r")
|
|
|
104 |
run_pandas.qid = run_pandas.qid.astype(str)
|
105 |
run_pandas["rank"] = run_pandas["rank"].astype(int)
|
106 |
run_pandas.score = run_pandas.score.astype(float)
|
107 |
+
all_groups = []
|
108 |
+
for qid, sub_df in run_pandas.groupby("qid"):
|
109 |
+
sub_df.sort_values(["score", "doc_id"], ascending=[False, False])
|
110 |
+
sub_df["rank"] = list(range(1, len(sub_df) + 1))
|
111 |
+
all_groups.append(sub_df)
|
112 |
+
run_pandas = pd.concat(all_groups)
|
113 |
return new_run, run_pandas
|
114 |
|
115 |
|
|
|
137 |
return did2text, sub_did2text
|
138 |
|
139 |
|
140 |
+
@st.cache_data(persist="disk")
|
141 |
def get_beir(dataset: str):
|
142 |
url = "https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/{}.zip".format(dataset)
|
143 |
out_dir = os.path.join(pathlib.Path(__file__).parent.absolute(), "datasets")
|
|
|
145 |
return GenericDataLoader(data_folder=data_path).load(split="test")
|
146 |
|
147 |
|
148 |
+
@st.cache_data(persist="disk")
|
149 |
+
def get_ir_datasets(dataset_name: str, input_fields_doc: str = None, input_fields_query: str = None):
|
150 |
dataset = ir_datasets.load(dataset_name)
|
151 |
queries = {}
|
152 |
for qid, query in dataset.queries_iter():
|
153 |
+
if input_fields_query is None:
|
154 |
+
if type(query) == str:
|
155 |
+
queries[qid] = query
|
156 |
+
else:
|
157 |
+
# get all fields that exist in query
|
158 |
+
all_fields = {field: getattr(query, field) for field in query._fields}
|
159 |
+
# put all fields into a single string
|
160 |
+
queries[qid] = " ".join([str(v) for v in all_fields.values()])
|
161 |
+
else:
|
162 |
+
all_fields = {field: getattr(query, field) for field in input_fields_query}
|
163 |
+
queries[qid] = " ".join([str(v) for v in all_fields.values()])
|
164 |
+
|
165 |
+
corpus = {}
|
166 |
+
for doc in dataset.docs_iter():
|
167 |
+
if input_fields_doc is None:
|
168 |
+
if type(doc) == str:
|
169 |
+
corpus[doc.doc_id] = {"text": doc}
|
170 |
+
else: # get all fields that exist in query
|
171 |
+
all_fields = {field: getattr(doc, field) for field in doc._fields}
|
172 |
+
corpus[doc.doc_id] = {"text": " ".join([str(v) for v in all_fields.values()])}
|
173 |
+
else:
|
174 |
+
all_fields = {field: getattr(doc, field) for field in input_fields_doc}
|
175 |
+
corpus[doc.doc_id] = {"text": " ".join([str(v) for v in all_fields.values()])}
|
176 |
+
|
177 |
# return corpus, queries, qrels
|
178 |
+
return corpus, queries, dataset.qrels_dict()
|
179 |
|
180 |
|
181 |
+
@st.cache_data(persist="disk")
|
182 |
+
def get_dataset(dataset_name: str, input_fields_doc, input_fields_query):
|
183 |
+
if type(input_fields_doc) == str:
|
184 |
+
input_fields_doc = input_fields_doc.strip().split(",")
|
185 |
+
if type(input_fields_query) == str:
|
186 |
+
input_fields_query = input_fields_query.strip().split(",")
|
187 |
+
|
188 |
if dataset_name == "":
|
189 |
return {}, {}, {}
|
190 |
|
191 |
if dataset_name in BEIR:
|
192 |
return get_beir(dataset_name)
|
193 |
elif dataset_name in IR_DATASETS:
|
194 |
+
return get_ir_datasets(dataset_name, input_fields_doc, input_fields_query)
|
195 |
elif dataset_name in LOCAL_DATASETS:
|
196 |
base_path = f"local_datasets/{dataset_name}"
|
197 |
corpus_file = open(f"{base_path}/corpus.jsonl", "r")
|
ir_dataset_metadata.py
ADDED
@@ -0,0 +1,486 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
IR_DATASETS = [
|
3 |
+
"antique/test",
|
4 |
+
"antique/test/non-offensive",
|
5 |
+
"antique/train",
|
6 |
+
"antique/train/split200-train",
|
7 |
+
"antique/train/split200-valid",
|
8 |
+
"aol-ia",
|
9 |
+
"aquaint/trec-robust-2005",
|
10 |
+
"argsme/1.0/touche-2020-task-1/uncorrected",
|
11 |
+
"argsme/2020-04-01/processed/touche-2022-task-1",
|
12 |
+
"argsme/2020-04-01/touche-2020-task-1",
|
13 |
+
"argsme/2020-04-01/touche-2020-task-1/uncorrected",
|
14 |
+
"argsme/2020-04-01/touche-2021-task-1",
|
15 |
+
"beir/arguana",
|
16 |
+
"beir/climate-fever",
|
17 |
+
"beir/cqadupstack/android",
|
18 |
+
"beir/cqadupstack/english",
|
19 |
+
"beir/cqadupstack/gaming",
|
20 |
+
"beir/cqadupstack/gis",
|
21 |
+
"beir/cqadupstack/mathematica",
|
22 |
+
"beir/cqadupstack/physics",
|
23 |
+
"beir/cqadupstack/programmers",
|
24 |
+
"beir/cqadupstack/stats",
|
25 |
+
"beir/cqadupstack/tex",
|
26 |
+
"beir/cqadupstack/unix",
|
27 |
+
"beir/cqadupstack/webmasters",
|
28 |
+
"beir/cqadupstack/wordpress",
|
29 |
+
"beir/dbpedia-entity/dev",
|
30 |
+
"beir/dbpedia-entity/test",
|
31 |
+
"beir/fever/dev",
|
32 |
+
"beir/fever/test",
|
33 |
+
"beir/fever/train",
|
34 |
+
"beir/fiqa/dev",
|
35 |
+
"beir/fiqa/test",
|
36 |
+
"beir/fiqa/train",
|
37 |
+
"beir/hotpotqa/dev",
|
38 |
+
"beir/hotpotqa/test",
|
39 |
+
"beir/hotpotqa/train",
|
40 |
+
"beir/msmarco/dev",
|
41 |
+
"beir/msmarco/test",
|
42 |
+
"beir/msmarco/train",
|
43 |
+
"beir/nfcorpus/dev",
|
44 |
+
"beir/nfcorpus/test",
|
45 |
+
"beir/nfcorpus/train",
|
46 |
+
"beir/nq",
|
47 |
+
"beir/quora/dev",
|
48 |
+
"beir/quora/test",
|
49 |
+
"beir/scidocs",
|
50 |
+
"beir/scifact/test",
|
51 |
+
"beir/scifact/train",
|
52 |
+
"beir/trec-covid",
|
53 |
+
"beir/webis-touche2020",
|
54 |
+
"beir/webis-touche2020/v2",
|
55 |
+
"car/v1.5/test200",
|
56 |
+
"car/v1.5/train/fold0",
|
57 |
+
"car/v1.5/train/fold1",
|
58 |
+
"car/v1.5/train/fold2",
|
59 |
+
"car/v1.5/train/fold3",
|
60 |
+
"car/v1.5/train/fold4",
|
61 |
+
"car/v1.5/trec-y1/auto",
|
62 |
+
"car/v1.5/trec-y1/manual",
|
63 |
+
"clinicaltrials/2017/trec-pm-2017",
|
64 |
+
"clinicaltrials/2017/trec-pm-2018",
|
65 |
+
"clinicaltrials/2019/trec-pm-2019",
|
66 |
+
"clinicaltrials/2021/trec-ct-2021",
|
67 |
+
"clueweb09/catb/trec-web-2009",
|
68 |
+
"clueweb09/catb/trec-web-2009/diversity",
|
69 |
+
"clueweb09/catb/trec-web-2010",
|
70 |
+
"clueweb09/catb/trec-web-2010/diversity",
|
71 |
+
"clueweb09/catb/trec-web-2011",
|
72 |
+
"clueweb09/catb/trec-web-2011/diversity",
|
73 |
+
"clueweb09/catb/trec-web-2012",
|
74 |
+
"clueweb09/catb/trec-web-2012/diversity",
|
75 |
+
"clueweb09/en/trec-web-2009",
|
76 |
+
"clueweb09/en/trec-web-2009/diversity",
|
77 |
+
"clueweb09/en/trec-web-2010",
|
78 |
+
"clueweb09/en/trec-web-2010/diversity",
|
79 |
+
"clueweb09/en/trec-web-2011",
|
80 |
+
"clueweb09/en/trec-web-2011/diversity",
|
81 |
+
"clueweb09/en/trec-web-2012",
|
82 |
+
"clueweb09/en/trec-web-2012/diversity",
|
83 |
+
"clueweb09/trec-mq-2009",
|
84 |
+
"clueweb12/b13/clef-ehealth",
|
85 |
+
"clueweb12/b13/clef-ehealth/cs",
|
86 |
+
"clueweb12/b13/clef-ehealth/de",
|
87 |
+
"clueweb12/b13/clef-ehealth/fr",
|
88 |
+
"clueweb12/b13/clef-ehealth/hu",
|
89 |
+
"clueweb12/b13/clef-ehealth/pl",
|
90 |
+
"clueweb12/b13/clef-ehealth/sv",
|
91 |
+
"clueweb12/b13/ntcir-www-1",
|
92 |
+
"clueweb12/b13/ntcir-www-2",
|
93 |
+
"clueweb12/b13/trec-misinfo-2019",
|
94 |
+
"clueweb12/touche-2020-task-2",
|
95 |
+
"clueweb12/touche-2021-task-2",
|
96 |
+
"clueweb12/touche-2022-task-2",
|
97 |
+
"clueweb12/touche-2022-task-2/expanded-doc-t5-query",
|
98 |
+
"clueweb12/trec-web-2013",
|
99 |
+
"clueweb12/trec-web-2013/diversity",
|
100 |
+
"clueweb12/trec-web-2014",
|
101 |
+
"clueweb12/trec-web-2014/diversity",
|
102 |
+
"codec",
|
103 |
+
"codec/economics",
|
104 |
+
"codec/history",
|
105 |
+
"codec/politics",
|
106 |
+
"codesearchnet/challenge",
|
107 |
+
"codesearchnet/test",
|
108 |
+
"codesearchnet/train",
|
109 |
+
"codesearchnet/valid",
|
110 |
+
"cord19/fulltext/trec-covid",
|
111 |
+
"cord19/trec-covid",
|
112 |
+
"cord19/trec-covid/round1",
|
113 |
+
"cord19/trec-covid/round2",
|
114 |
+
"cord19/trec-covid/round3",
|
115 |
+
"cord19/trec-covid/round4",
|
116 |
+
"cord19/trec-covid/round5",
|
117 |
+
"cranfield",
|
118 |
+
"disks45/nocr/trec-robust-2004",
|
119 |
+
"disks45/nocr/trec-robust-2004/fold1",
|
120 |
+
"disks45/nocr/trec-robust-2004/fold2",
|
121 |
+
"disks45/nocr/trec-robust-2004/fold3",
|
122 |
+
"disks45/nocr/trec-robust-2004/fold4",
|
123 |
+
"disks45/nocr/trec-robust-2004/fold5",
|
124 |
+
"disks45/nocr/trec7",
|
125 |
+
"disks45/nocr/trec8",
|
126 |
+
"dpr-w100/natural-questions/dev",
|
127 |
+
"dpr-w100/natural-questions/train",
|
128 |
+
"dpr-w100/trivia-qa/dev",
|
129 |
+
"dpr-w100/trivia-qa/train",
|
130 |
+
"gov/trec-web-2002",
|
131 |
+
"gov/trec-web-2002/named-page",
|
132 |
+
"gov/trec-web-2003",
|
133 |
+
"gov/trec-web-2003/named-page",
|
134 |
+
"gov/trec-web-2004",
|
135 |
+
"gov2/trec-mq-2007",
|
136 |
+
"gov2/trec-mq-2008",
|
137 |
+
"gov2/trec-tb-2004",
|
138 |
+
"gov2/trec-tb-2005",
|
139 |
+
"gov2/trec-tb-2005/efficiency",
|
140 |
+
"gov2/trec-tb-2005/named-page",
|
141 |
+
"gov2/trec-tb-2006",
|
142 |
+
"gov2/trec-tb-2006/efficiency",
|
143 |
+
"gov2/trec-tb-2006/efficiency/stream3",
|
144 |
+
"gov2/trec-tb-2006/named-page",
|
145 |
+
"hc4/fa/dev",
|
146 |
+
"hc4/fa/test",
|
147 |
+
"hc4/fa/train",
|
148 |
+
"hc4/ru/dev",
|
149 |
+
"hc4/ru/test",
|
150 |
+
"hc4/ru/train",
|
151 |
+
"hc4/zh/dev",
|
152 |
+
"hc4/zh/test",
|
153 |
+
"hc4/zh/train",
|
154 |
+
"highwire/trec-genomics-2006",
|
155 |
+
"highwire/trec-genomics-2007",
|
156 |
+
"istella22/test",
|
157 |
+
"istella22/test/fold1",
|
158 |
+
"istella22/test/fold2",
|
159 |
+
"istella22/test/fold3",
|
160 |
+
"istella22/test/fold4",
|
161 |
+
"istella22/test/fold5",
|
162 |
+
"kilt/codec",
|
163 |
+
"kilt/codec/economics",
|
164 |
+
"kilt/codec/history",
|
165 |
+
"kilt/codec/politics",
|
166 |
+
"lotte/lifestyle/dev/forum",
|
167 |
+
"lotte/lifestyle/dev/search",
|
168 |
+
"lotte/lifestyle/test/forum",
|
169 |
+
"lotte/lifestyle/test/search",
|
170 |
+
"lotte/pooled/dev/forum",
|
171 |
+
"lotte/pooled/dev/search",
|
172 |
+
"lotte/pooled/test/forum",
|
173 |
+
"lotte/pooled/test/search",
|
174 |
+
"lotte/recreation/dev/forum",
|
175 |
+
"lotte/recreation/dev/search",
|
176 |
+
"lotte/recreation/test/forum",
|
177 |
+
"lotte/recreation/test/search",
|
178 |
+
"lotte/science/dev/forum",
|
179 |
+
"lotte/science/dev/search",
|
180 |
+
"lotte/science/test/forum",
|
181 |
+
"lotte/science/test/search",
|
182 |
+
"lotte/technology/dev/forum",
|
183 |
+
"lotte/technology/dev/search",
|
184 |
+
"lotte/technology/test/forum",
|
185 |
+
"lotte/technology/test/search",
|
186 |
+
"lotte/writing/dev/forum",
|
187 |
+
"lotte/writing/dev/search",
|
188 |
+
"lotte/writing/test/forum",
|
189 |
+
"lotte/writing/test/search",
|
190 |
+
"medline/2004/trec-genomics-2004",
|
191 |
+
"medline/2004/trec-genomics-2005",
|
192 |
+
"medline/2017/trec-pm-2017",
|
193 |
+
"medline/2017/trec-pm-2018",
|
194 |
+
"mmarco/de/dev",
|
195 |
+
"mmarco/de/dev/small",
|
196 |
+
"mmarco/de/train",
|
197 |
+
"mmarco/es/dev",
|
198 |
+
"mmarco/es/dev/small",
|
199 |
+
"mmarco/es/train",
|
200 |
+
"mmarco/fr/dev",
|
201 |
+
"mmarco/fr/dev/small",
|
202 |
+
"mmarco/fr/train",
|
203 |
+
"mmarco/id/dev",
|
204 |
+
"mmarco/id/dev/small",
|
205 |
+
"mmarco/id/train",
|
206 |
+
"mmarco/it/dev",
|
207 |
+
"mmarco/it/dev/small",
|
208 |
+
"mmarco/it/train",
|
209 |
+
"mmarco/pt/dev",
|
210 |
+
"mmarco/pt/dev/small",
|
211 |
+
"mmarco/pt/dev/small/v1.1",
|
212 |
+
"mmarco/pt/dev/v1.1",
|
213 |
+
"mmarco/pt/train",
|
214 |
+
"mmarco/pt/train/v1.1",
|
215 |
+
"mmarco/ru/dev",
|
216 |
+
"mmarco/ru/dev/small",
|
217 |
+
"mmarco/ru/train",
|
218 |
+
"mmarco/v2/ar/dev",
|
219 |
+
"mmarco/v2/ar/dev/small",
|
220 |
+
"mmarco/v2/ar/train",
|
221 |
+
"mmarco/v2/de/dev",
|
222 |
+
"mmarco/v2/de/dev/small",
|
223 |
+
"mmarco/v2/de/train",
|
224 |
+
"mmarco/v2/dt/dev",
|
225 |
+
"mmarco/v2/dt/dev/small",
|
226 |
+
"mmarco/v2/dt/train",
|
227 |
+
"mmarco/v2/es/dev",
|
228 |
+
"mmarco/v2/es/dev/small",
|
229 |
+
"mmarco/v2/es/train",
|
230 |
+
"mmarco/v2/fr/dev",
|
231 |
+
"mmarco/v2/fr/dev/small",
|
232 |
+
"mmarco/v2/fr/train",
|
233 |
+
"mmarco/v2/hi/dev",
|
234 |
+
"mmarco/v2/hi/dev/small",
|
235 |
+
"mmarco/v2/hi/train",
|
236 |
+
"mmarco/v2/id/dev",
|
237 |
+
"mmarco/v2/id/dev/small",
|
238 |
+
"mmarco/v2/id/train",
|
239 |
+
"mmarco/v2/it/dev",
|
240 |
+
"mmarco/v2/it/dev/small",
|
241 |
+
"mmarco/v2/it/train",
|
242 |
+
"mmarco/v2/ja/dev",
|
243 |
+
"mmarco/v2/ja/dev/small",
|
244 |
+
"mmarco/v2/ja/train",
|
245 |
+
"mmarco/v2/pt/dev",
|
246 |
+
"mmarco/v2/pt/dev/small",
|
247 |
+
"mmarco/v2/pt/train",
|
248 |
+
"mmarco/v2/ru/dev",
|
249 |
+
"mmarco/v2/ru/dev/small",
|
250 |
+
"mmarco/v2/ru/train",
|
251 |
+
"mmarco/v2/vi/dev",
|
252 |
+
"mmarco/v2/vi/dev/small",
|
253 |
+
"mmarco/v2/vi/train",
|
254 |
+
"mmarco/v2/zh/dev",
|
255 |
+
"mmarco/v2/zh/dev/small",
|
256 |
+
"mmarco/v2/zh/train",
|
257 |
+
"mmarco/zh/dev",
|
258 |
+
"mmarco/zh/dev/small",
|
259 |
+
"mmarco/zh/dev/small/v1.1",
|
260 |
+
"mmarco/zh/dev/v1.1",
|
261 |
+
"mmarco/zh/train",
|
262 |
+
"mr-tydi/ar",
|
263 |
+
"mr-tydi/ar/dev",
|
264 |
+
"mr-tydi/ar/test",
|
265 |
+
"mr-tydi/ar/train",
|
266 |
+
"mr-tydi/bn",
|
267 |
+
"mr-tydi/bn/dev",
|
268 |
+
"mr-tydi/bn/test",
|
269 |
+
"mr-tydi/bn/train",
|
270 |
+
"mr-tydi/en",
|
271 |
+
"mr-tydi/en/dev",
|
272 |
+
"mr-tydi/en/test",
|
273 |
+
"mr-tydi/en/train",
|
274 |
+
"mr-tydi/fi",
|
275 |
+
"mr-tydi/fi/dev",
|
276 |
+
"mr-tydi/fi/test",
|
277 |
+
"mr-tydi/fi/train",
|
278 |
+
"mr-tydi/id",
|
279 |
+
"mr-tydi/id/dev",
|
280 |
+
"mr-tydi/id/test",
|
281 |
+
"mr-tydi/id/train",
|
282 |
+
"mr-tydi/ja",
|
283 |
+
"mr-tydi/ja/dev",
|
284 |
+
"mr-tydi/ja/test",
|
285 |
+
"mr-tydi/ja/train",
|
286 |
+
"mr-tydi/ko",
|
287 |
+
"mr-tydi/ko/dev",
|
288 |
+
"mr-tydi/ko/test",
|
289 |
+
"mr-tydi/ko/train",
|
290 |
+
"mr-tydi/ru",
|
291 |
+
"mr-tydi/ru/dev",
|
292 |
+
"mr-tydi/ru/test",
|
293 |
+
"mr-tydi/ru/train",
|
294 |
+
"mr-tydi/sw",
|
295 |
+
"mr-tydi/sw/dev",
|
296 |
+
"mr-tydi/sw/test",
|
297 |
+
"mr-tydi/sw/train",
|
298 |
+
"mr-tydi/te",
|
299 |
+
"mr-tydi/te/dev",
|
300 |
+
"mr-tydi/te/test",
|
301 |
+
"mr-tydi/te/train",
|
302 |
+
"mr-tydi/th",
|
303 |
+
"mr-tydi/th/dev",
|
304 |
+
"mr-tydi/th/test",
|
305 |
+
"mr-tydi/th/train",
|
306 |
+
"msmarco-document-v2/dev1",
|
307 |
+
"msmarco-document-v2/dev2",
|
308 |
+
"msmarco-document-v2/train",
|
309 |
+
"msmarco-document-v2/trec-dl-2019",
|
310 |
+
"msmarco-document-v2/trec-dl-2019/judged",
|
311 |
+
"msmarco-document-v2/trec-dl-2020",
|
312 |
+
"msmarco-document-v2/trec-dl-2020/judged",
|
313 |
+
"msmarco-document-v2/trec-dl-2021",
|
314 |
+
"msmarco-document-v2/trec-dl-2021/judged",
|
315 |
+
"msmarco-document-v2/trec-dl-2022",
|
316 |
+
"msmarco-document-v2/trec-dl-2022/judged",
|
317 |
+
"msmarco-document/dev",
|
318 |
+
"msmarco-document/orcas",
|
319 |
+
"msmarco-document/train",
|
320 |
+
"msmarco-document/trec-dl-2019",
|
321 |
+
"msmarco-document/trec-dl-2019/judged",
|
322 |
+
"msmarco-document/trec-dl-2020",
|
323 |
+
"msmarco-document/trec-dl-2020/judged",
|
324 |
+
"msmarco-document/trec-dl-hard",
|
325 |
+
"msmarco-document/trec-dl-hard/fold1",
|
326 |
+
"msmarco-document/trec-dl-hard/fold2",
|
327 |
+
"msmarco-document/trec-dl-hard/fold3",
|
328 |
+
"msmarco-document/trec-dl-hard/fold4",
|
329 |
+
"msmarco-document/trec-dl-hard/fold5",
|
330 |
+
"msmarco-passage-v2/dev1",
|
331 |
+
"msmarco-passage-v2/dev2",
|
332 |
+
"msmarco-passage-v2/train",
|
333 |
+
"msmarco-passage-v2/trec-dl-2021",
|
334 |
+
"msmarco-passage-v2/trec-dl-2021/judged",
|
335 |
+
"msmarco-passage-v2/trec-dl-2022",
|
336 |
+
"msmarco-passage-v2/trec-dl-2022/judged",
|
337 |
+
"msmarco-passage/dev",
|
338 |
+
"msmarco-passage/dev/2",
|
339 |
+
"msmarco-passage/dev/judged",
|
340 |
+
"msmarco-passage/dev/small",
|
341 |
+
"msmarco-passage/train",
|
342 |
+
"msmarco-passage/train/judged",
|
343 |
+
"msmarco-passage/train/medical",
|
344 |
+
"msmarco-passage/train/split200-train",
|
345 |
+
"msmarco-passage/train/split200-valid",
|
346 |
+
"msmarco-passage/train/triples-small",
|
347 |
+
"msmarco-passage/train/triples-v2",
|
348 |
+
"msmarco-passage/trec-dl-2019",
|
349 |
+
"msmarco-passage/trec-dl-2019/judged",
|
350 |
+
"msmarco-passage/trec-dl-2020",
|
351 |
+
"msmarco-passage/trec-dl-2020/judged",
|
352 |
+
"msmarco-passage/trec-dl-hard",
|
353 |
+
"msmarco-passage/trec-dl-hard/fold1",
|
354 |
+
"msmarco-passage/trec-dl-hard/fold2",
|
355 |
+
"msmarco-passage/trec-dl-hard/fold3",
|
356 |
+
"msmarco-passage/trec-dl-hard/fold4",
|
357 |
+
"msmarco-passage/trec-dl-hard/fold5",
|
358 |
+
"msmarco-qna/dev",
|
359 |
+
"msmarco-qna/train",
|
360 |
+
"natural-questions/dev",
|
361 |
+
"natural-questions/train",
|
362 |
+
"neuclir/1/fa/hc4-filtered",
|
363 |
+
"neuclir/1/ru/hc4-filtered",
|
364 |
+
"neuclir/1/zh/hc4-filtered",
|
365 |
+
"neumarco/fa/dev",
|
366 |
+
"neumarco/fa/dev/judged",
|
367 |
+
"neumarco/fa/dev/small",
|
368 |
+
"neumarco/fa/train",
|
369 |
+
"neumarco/fa/train/judged",
|
370 |
+
"neumarco/ru/dev",
|
371 |
+
"neumarco/ru/dev/judged",
|
372 |
+
"neumarco/ru/dev/small",
|
373 |
+
"neumarco/ru/train",
|
374 |
+
"neumarco/ru/train/judged",
|
375 |
+
"neumarco/zh/dev",
|
376 |
+
"neumarco/zh/dev/judged",
|
377 |
+
"neumarco/zh/dev/small",
|
378 |
+
"neumarco/zh/train",
|
379 |
+
"neumarco/zh/train/judged",
|
380 |
+
"nfcorpus/dev",
|
381 |
+
"nfcorpus/dev/nontopic",
|
382 |
+
"nfcorpus/dev/video",
|
383 |
+
"nfcorpus/test",
|
384 |
+
"nfcorpus/test/nontopic",
|
385 |
+
"nfcorpus/test/video",
|
386 |
+
"nfcorpus/train",
|
387 |
+
"nfcorpus/train/nontopic",
|
388 |
+
"nfcorpus/train/video",
|
389 |
+
"nyt/trec-core-2017",
|
390 |
+
"nyt/wksup",
|
391 |
+
"nyt/wksup/train",
|
392 |
+
"nyt/wksup/valid",
|
393 |
+
"pmc/v1/trec-cds-2014",
|
394 |
+
"pmc/v1/trec-cds-2015",
|
395 |
+
"pmc/v2/trec-cds-2016",
|
396 |
+
"sara",
|
397 |
+
"touche-image/2022-06-13/touche-2022-task-3",
|
398 |
+
"trec-arabic/ar2001",
|
399 |
+
"trec-arabic/ar2002",
|
400 |
+
"trec-cast/v0/train",
|
401 |
+
"trec-cast/v0/train/judged",
|
402 |
+
"trec-cast/v1/2019",
|
403 |
+
"trec-cast/v1/2019/judged",
|
404 |
+
"trec-cast/v1/2020",
|
405 |
+
"trec-cast/v1/2020/judged",
|
406 |
+
"trec-fair-2021/eval",
|
407 |
+
"trec-fair-2021/train",
|
408 |
+
"trec-fair/2021/eval",
|
409 |
+
"trec-fair/2021/train",
|
410 |
+
"trec-fair/2022/train",
|
411 |
+
"trec-mandarin/trec5",
|
412 |
+
"trec-mandarin/trec6",
|
413 |
+
"trec-robust04",
|
414 |
+
"trec-robust04/fold1",
|
415 |
+
"trec-robust04/fold2",
|
416 |
+
"trec-robust04/fold3",
|
417 |
+
"trec-robust04/fold4",
|
418 |
+
"trec-robust04/fold5",
|
419 |
+
"trec-spanish/trec3",
|
420 |
+
"trec-spanish/trec4",
|
421 |
+
"trec-tot/2023/dev",
|
422 |
+
"trec-tot/2023/train",
|
423 |
+
"tripclick/train",
|
424 |
+
"tripclick/train/head",
|
425 |
+
"tripclick/train/head/dctr",
|
426 |
+
"tripclick/train/hofstaetter-triples",
|
427 |
+
"tripclick/train/tail",
|
428 |
+
"tripclick/train/torso",
|
429 |
+
"tripclick/val",
|
430 |
+
"tripclick/val/head",
|
431 |
+
"tripclick/val/head/dctr",
|
432 |
+
"tripclick/val/tail",
|
433 |
+
"tripclick/val/torso",
|
434 |
+
"tweets2013-ia/trec-mb-2013",
|
435 |
+
"tweets2013-ia/trec-mb-2014",
|
436 |
+
"vaswani",
|
437 |
+
"wapo/v2/trec-core-2018",
|
438 |
+
"wapo/v2/trec-news-2018",
|
439 |
+
"wapo/v2/trec-news-2019",
|
440 |
+
"wikiclir/ar",
|
441 |
+
"wikiclir/ca",
|
442 |
+
"wikiclir/cs",
|
443 |
+
"wikiclir/de",
|
444 |
+
"wikiclir/en-simple",
|
445 |
+
"wikiclir/es",
|
446 |
+
"wikiclir/fi",
|
447 |
+
"wikiclir/fr",
|
448 |
+
"wikiclir/it",
|
449 |
+
"wikiclir/ja",
|
450 |
+
"wikiclir/ko",
|
451 |
+
"wikiclir/nl",
|
452 |
+
"wikiclir/nn",
|
453 |
+
"wikiclir/no",
|
454 |
+
"wikiclir/pl",
|
455 |
+
"wikiclir/pt",
|
456 |
+
"wikiclir/ro",
|
457 |
+
"wikiclir/ru",
|
458 |
+
"wikiclir/sv",
|
459 |
+
"wikiclir/sw",
|
460 |
+
"wikiclir/tl",
|
461 |
+
"wikiclir/tr",
|
462 |
+
"wikiclir/uk",
|
463 |
+
"wikiclir/vi",
|
464 |
+
"wikiclir/zh",
|
465 |
+
"wikir/en1k/test",
|
466 |
+
"wikir/en1k/training",
|
467 |
+
"wikir/en1k/validation",
|
468 |
+
"wikir/en59k/test",
|
469 |
+
"wikir/en59k/training",
|
470 |
+
"wikir/en59k/validation",
|
471 |
+
"wikir/en78k/test",
|
472 |
+
"wikir/en78k/training",
|
473 |
+
"wikir/en78k/validation",
|
474 |
+
"wikir/ens78k/test",
|
475 |
+
"wikir/ens78k/training",
|
476 |
+
"wikir/ens78k/validation",
|
477 |
+
"wikir/es13k/test",
|
478 |
+
"wikir/es13k/training",
|
479 |
+
"wikir/es13k/validation",
|
480 |
+
"wikir/fr14k/test",
|
481 |
+
"wikir/fr14k/training",
|
482 |
+
"wikir/fr14k/validation",
|
483 |
+
"wikir/it16k/test",
|
484 |
+
"wikir/it16k/training",
|
485 |
+
"wikir/it16k/validation"
|
486 |
+
]
|
ir_dataset_names.json
ADDED
@@ -0,0 +1,485 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
"antique/test",
|
3 |
+
"antique/test/non-offensive",
|
4 |
+
"antique/train",
|
5 |
+
"antique/train/split200-train",
|
6 |
+
"antique/train/split200-valid",
|
7 |
+
"aol-ia",
|
8 |
+
"aquaint/trec-robust-2005",
|
9 |
+
"argsme/1.0/touche-2020-task-1/uncorrected",
|
10 |
+
"argsme/2020-04-01/processed/touche-2022-task-1",
|
11 |
+
"argsme/2020-04-01/touche-2020-task-1",
|
12 |
+
"argsme/2020-04-01/touche-2020-task-1/uncorrected",
|
13 |
+
"argsme/2020-04-01/touche-2021-task-1",
|
14 |
+
"beir/arguana",
|
15 |
+
"beir/climate-fever",
|
16 |
+
"beir/cqadupstack/android",
|
17 |
+
"beir/cqadupstack/english",
|
18 |
+
"beir/cqadupstack/gaming",
|
19 |
+
"beir/cqadupstack/gis",
|
20 |
+
"beir/cqadupstack/mathematica",
|
21 |
+
"beir/cqadupstack/physics",
|
22 |
+
"beir/cqadupstack/programmers",
|
23 |
+
"beir/cqadupstack/stats",
|
24 |
+
"beir/cqadupstack/tex",
|
25 |
+
"beir/cqadupstack/unix",
|
26 |
+
"beir/cqadupstack/webmasters",
|
27 |
+
"beir/cqadupstack/wordpress",
|
28 |
+
"beir/dbpedia-entity/dev",
|
29 |
+
"beir/dbpedia-entity/test",
|
30 |
+
"beir/fever/dev",
|
31 |
+
"beir/fever/test",
|
32 |
+
"beir/fever/train",
|
33 |
+
"beir/fiqa/dev",
|
34 |
+
"beir/fiqa/test",
|
35 |
+
"beir/fiqa/train",
|
36 |
+
"beir/hotpotqa/dev",
|
37 |
+
"beir/hotpotqa/test",
|
38 |
+
"beir/hotpotqa/train",
|
39 |
+
"beir/msmarco/dev",
|
40 |
+
"beir/msmarco/test",
|
41 |
+
"beir/msmarco/train",
|
42 |
+
"beir/nfcorpus/dev",
|
43 |
+
"beir/nfcorpus/test",
|
44 |
+
"beir/nfcorpus/train",
|
45 |
+
"beir/nq",
|
46 |
+
"beir/quora/dev",
|
47 |
+
"beir/quora/test",
|
48 |
+
"beir/scidocs",
|
49 |
+
"beir/scifact/test",
|
50 |
+
"beir/scifact/train",
|
51 |
+
"beir/trec-covid",
|
52 |
+
"beir/webis-touche2020",
|
53 |
+
"beir/webis-touche2020/v2",
|
54 |
+
"car/v1.5/test200",
|
55 |
+
"car/v1.5/train/fold0",
|
56 |
+
"car/v1.5/train/fold1",
|
57 |
+
"car/v1.5/train/fold2",
|
58 |
+
"car/v1.5/train/fold3",
|
59 |
+
"car/v1.5/train/fold4",
|
60 |
+
"car/v1.5/trec-y1/auto",
|
61 |
+
"car/v1.5/trec-y1/manual",
|
62 |
+
"clinicaltrials/2017/trec-pm-2017",
|
63 |
+
"clinicaltrials/2017/trec-pm-2018",
|
64 |
+
"clinicaltrials/2019/trec-pm-2019",
|
65 |
+
"clinicaltrials/2021/trec-ct-2021",
|
66 |
+
"clueweb09/catb/trec-web-2009",
|
67 |
+
"clueweb09/catb/trec-web-2009/diversity",
|
68 |
+
"clueweb09/catb/trec-web-2010",
|
69 |
+
"clueweb09/catb/trec-web-2010/diversity",
|
70 |
+
"clueweb09/catb/trec-web-2011",
|
71 |
+
"clueweb09/catb/trec-web-2011/diversity",
|
72 |
+
"clueweb09/catb/trec-web-2012",
|
73 |
+
"clueweb09/catb/trec-web-2012/diversity",
|
74 |
+
"clueweb09/en/trec-web-2009",
|
75 |
+
"clueweb09/en/trec-web-2009/diversity",
|
76 |
+
"clueweb09/en/trec-web-2010",
|
77 |
+
"clueweb09/en/trec-web-2010/diversity",
|
78 |
+
"clueweb09/en/trec-web-2011",
|
79 |
+
"clueweb09/en/trec-web-2011/diversity",
|
80 |
+
"clueweb09/en/trec-web-2012",
|
81 |
+
"clueweb09/en/trec-web-2012/diversity",
|
82 |
+
"clueweb09/trec-mq-2009",
|
83 |
+
"clueweb12/b13/clef-ehealth",
|
84 |
+
"clueweb12/b13/clef-ehealth/cs",
|
85 |
+
"clueweb12/b13/clef-ehealth/de",
|
86 |
+
"clueweb12/b13/clef-ehealth/fr",
|
87 |
+
"clueweb12/b13/clef-ehealth/hu",
|
88 |
+
"clueweb12/b13/clef-ehealth/pl",
|
89 |
+
"clueweb12/b13/clef-ehealth/sv",
|
90 |
+
"clueweb12/b13/ntcir-www-1",
|
91 |
+
"clueweb12/b13/ntcir-www-2",
|
92 |
+
"clueweb12/b13/trec-misinfo-2019",
|
93 |
+
"clueweb12/touche-2020-task-2",
|
94 |
+
"clueweb12/touche-2021-task-2",
|
95 |
+
"clueweb12/touche-2022-task-2",
|
96 |
+
"clueweb12/touche-2022-task-2/expanded-doc-t5-query",
|
97 |
+
"clueweb12/trec-web-2013",
|
98 |
+
"clueweb12/trec-web-2013/diversity",
|
99 |
+
"clueweb12/trec-web-2014",
|
100 |
+
"clueweb12/trec-web-2014/diversity",
|
101 |
+
"codec",
|
102 |
+
"codec/economics",
|
103 |
+
"codec/history",
|
104 |
+
"codec/politics",
|
105 |
+
"codesearchnet/challenge",
|
106 |
+
"codesearchnet/test",
|
107 |
+
"codesearchnet/train",
|
108 |
+
"codesearchnet/valid",
|
109 |
+
"cord19/fulltext/trec-covid",
|
110 |
+
"cord19/trec-covid",
|
111 |
+
"cord19/trec-covid/round1",
|
112 |
+
"cord19/trec-covid/round2",
|
113 |
+
"cord19/trec-covid/round3",
|
114 |
+
"cord19/trec-covid/round4",
|
115 |
+
"cord19/trec-covid/round5",
|
116 |
+
"cranfield",
|
117 |
+
"disks45/nocr/trec-robust-2004",
|
118 |
+
"disks45/nocr/trec-robust-2004/fold1",
|
119 |
+
"disks45/nocr/trec-robust-2004/fold2",
|
120 |
+
"disks45/nocr/trec-robust-2004/fold3",
|
121 |
+
"disks45/nocr/trec-robust-2004/fold4",
|
122 |
+
"disks45/nocr/trec-robust-2004/fold5",
|
123 |
+
"disks45/nocr/trec7",
|
124 |
+
"disks45/nocr/trec8",
|
125 |
+
"dpr-w100/natural-questions/dev",
|
126 |
+
"dpr-w100/natural-questions/train",
|
127 |
+
"dpr-w100/trivia-qa/dev",
|
128 |
+
"dpr-w100/trivia-qa/train",
|
129 |
+
"gov/trec-web-2002",
|
130 |
+
"gov/trec-web-2002/named-page",
|
131 |
+
"gov/trec-web-2003",
|
132 |
+
"gov/trec-web-2003/named-page",
|
133 |
+
"gov/trec-web-2004",
|
134 |
+
"gov2/trec-mq-2007",
|
135 |
+
"gov2/trec-mq-2008",
|
136 |
+
"gov2/trec-tb-2004",
|
137 |
+
"gov2/trec-tb-2005",
|
138 |
+
"gov2/trec-tb-2005/efficiency",
|
139 |
+
"gov2/trec-tb-2005/named-page",
|
140 |
+
"gov2/trec-tb-2006",
|
141 |
+
"gov2/trec-tb-2006/efficiency",
|
142 |
+
"gov2/trec-tb-2006/efficiency/stream3",
|
143 |
+
"gov2/trec-tb-2006/named-page",
|
144 |
+
"hc4/fa/dev",
|
145 |
+
"hc4/fa/test",
|
146 |
+
"hc4/fa/train",
|
147 |
+
"hc4/ru/dev",
|
148 |
+
"hc4/ru/test",
|
149 |
+
"hc4/ru/train",
|
150 |
+
"hc4/zh/dev",
|
151 |
+
"hc4/zh/test",
|
152 |
+
"hc4/zh/train",
|
153 |
+
"highwire/trec-genomics-2006",
|
154 |
+
"highwire/trec-genomics-2007",
|
155 |
+
"istella22/test",
|
156 |
+
"istella22/test/fold1",
|
157 |
+
"istella22/test/fold2",
|
158 |
+
"istella22/test/fold3",
|
159 |
+
"istella22/test/fold4",
|
160 |
+
"istella22/test/fold5",
|
161 |
+
"kilt/codec",
|
162 |
+
"kilt/codec/economics",
|
163 |
+
"kilt/codec/history",
|
164 |
+
"kilt/codec/politics",
|
165 |
+
"lotte/lifestyle/dev/forum",
|
166 |
+
"lotte/lifestyle/dev/search",
|
167 |
+
"lotte/lifestyle/test/forum",
|
168 |
+
"lotte/lifestyle/test/search",
|
169 |
+
"lotte/pooled/dev/forum",
|
170 |
+
"lotte/pooled/dev/search",
|
171 |
+
"lotte/pooled/test/forum",
|
172 |
+
"lotte/pooled/test/search",
|
173 |
+
"lotte/recreation/dev/forum",
|
174 |
+
"lotte/recreation/dev/search",
|
175 |
+
"lotte/recreation/test/forum",
|
176 |
+
"lotte/recreation/test/search",
|
177 |
+
"lotte/science/dev/forum",
|
178 |
+
"lotte/science/dev/search",
|
179 |
+
"lotte/science/test/forum",
|
180 |
+
"lotte/science/test/search",
|
181 |
+
"lotte/technology/dev/forum",
|
182 |
+
"lotte/technology/dev/search",
|
183 |
+
"lotte/technology/test/forum",
|
184 |
+
"lotte/technology/test/search",
|
185 |
+
"lotte/writing/dev/forum",
|
186 |
+
"lotte/writing/dev/search",
|
187 |
+
"lotte/writing/test/forum",
|
188 |
+
"lotte/writing/test/search",
|
189 |
+
"medline/2004/trec-genomics-2004",
|
190 |
+
"medline/2004/trec-genomics-2005",
|
191 |
+
"medline/2017/trec-pm-2017",
|
192 |
+
"medline/2017/trec-pm-2018",
|
193 |
+
"mmarco/de/dev",
|
194 |
+
"mmarco/de/dev/small",
|
195 |
+
"mmarco/de/train",
|
196 |
+
"mmarco/es/dev",
|
197 |
+
"mmarco/es/dev/small",
|
198 |
+
"mmarco/es/train",
|
199 |
+
"mmarco/fr/dev",
|
200 |
+
"mmarco/fr/dev/small",
|
201 |
+
"mmarco/fr/train",
|
202 |
+
"mmarco/id/dev",
|
203 |
+
"mmarco/id/dev/small",
|
204 |
+
"mmarco/id/train",
|
205 |
+
"mmarco/it/dev",
|
206 |
+
"mmarco/it/dev/small",
|
207 |
+
"mmarco/it/train",
|
208 |
+
"mmarco/pt/dev",
|
209 |
+
"mmarco/pt/dev/small",
|
210 |
+
"mmarco/pt/dev/small/v1.1",
|
211 |
+
"mmarco/pt/dev/v1.1",
|
212 |
+
"mmarco/pt/train",
|
213 |
+
"mmarco/pt/train/v1.1",
|
214 |
+
"mmarco/ru/dev",
|
215 |
+
"mmarco/ru/dev/small",
|
216 |
+
"mmarco/ru/train",
|
217 |
+
"mmarco/v2/ar/dev",
|
218 |
+
"mmarco/v2/ar/dev/small",
|
219 |
+
"mmarco/v2/ar/train",
|
220 |
+
"mmarco/v2/de/dev",
|
221 |
+
"mmarco/v2/de/dev/small",
|
222 |
+
"mmarco/v2/de/train",
|
223 |
+
"mmarco/v2/dt/dev",
|
224 |
+
"mmarco/v2/dt/dev/small",
|
225 |
+
"mmarco/v2/dt/train",
|
226 |
+
"mmarco/v2/es/dev",
|
227 |
+
"mmarco/v2/es/dev/small",
|
228 |
+
"mmarco/v2/es/train",
|
229 |
+
"mmarco/v2/fr/dev",
|
230 |
+
"mmarco/v2/fr/dev/small",
|
231 |
+
"mmarco/v2/fr/train",
|
232 |
+
"mmarco/v2/hi/dev",
|
233 |
+
"mmarco/v2/hi/dev/small",
|
234 |
+
"mmarco/v2/hi/train",
|
235 |
+
"mmarco/v2/id/dev",
|
236 |
+
"mmarco/v2/id/dev/small",
|
237 |
+
"mmarco/v2/id/train",
|
238 |
+
"mmarco/v2/it/dev",
|
239 |
+
"mmarco/v2/it/dev/small",
|
240 |
+
"mmarco/v2/it/train",
|
241 |
+
"mmarco/v2/ja/dev",
|
242 |
+
"mmarco/v2/ja/dev/small",
|
243 |
+
"mmarco/v2/ja/train",
|
244 |
+
"mmarco/v2/pt/dev",
|
245 |
+
"mmarco/v2/pt/dev/small",
|
246 |
+
"mmarco/v2/pt/train",
|
247 |
+
"mmarco/v2/ru/dev",
|
248 |
+
"mmarco/v2/ru/dev/small",
|
249 |
+
"mmarco/v2/ru/train",
|
250 |
+
"mmarco/v2/vi/dev",
|
251 |
+
"mmarco/v2/vi/dev/small",
|
252 |
+
"mmarco/v2/vi/train",
|
253 |
+
"mmarco/v2/zh/dev",
|
254 |
+
"mmarco/v2/zh/dev/small",
|
255 |
+
"mmarco/v2/zh/train",
|
256 |
+
"mmarco/zh/dev",
|
257 |
+
"mmarco/zh/dev/small",
|
258 |
+
"mmarco/zh/dev/small/v1.1",
|
259 |
+
"mmarco/zh/dev/v1.1",
|
260 |
+
"mmarco/zh/train",
|
261 |
+
"mr-tydi/ar",
|
262 |
+
"mr-tydi/ar/dev",
|
263 |
+
"mr-tydi/ar/test",
|
264 |
+
"mr-tydi/ar/train",
|
265 |
+
"mr-tydi/bn",
|
266 |
+
"mr-tydi/bn/dev",
|
267 |
+
"mr-tydi/bn/test",
|
268 |
+
"mr-tydi/bn/train",
|
269 |
+
"mr-tydi/en",
|
270 |
+
"mr-tydi/en/dev",
|
271 |
+
"mr-tydi/en/test",
|
272 |
+
"mr-tydi/en/train",
|
273 |
+
"mr-tydi/fi",
|
274 |
+
"mr-tydi/fi/dev",
|
275 |
+
"mr-tydi/fi/test",
|
276 |
+
"mr-tydi/fi/train",
|
277 |
+
"mr-tydi/id",
|
278 |
+
"mr-tydi/id/dev",
|
279 |
+
"mr-tydi/id/test",
|
280 |
+
"mr-tydi/id/train",
|
281 |
+
"mr-tydi/ja",
|
282 |
+
"mr-tydi/ja/dev",
|
283 |
+
"mr-tydi/ja/test",
|
284 |
+
"mr-tydi/ja/train",
|
285 |
+
"mr-tydi/ko",
|
286 |
+
"mr-tydi/ko/dev",
|
287 |
+
"mr-tydi/ko/test",
|
288 |
+
"mr-tydi/ko/train",
|
289 |
+
"mr-tydi/ru",
|
290 |
+
"mr-tydi/ru/dev",
|
291 |
+
"mr-tydi/ru/test",
|
292 |
+
"mr-tydi/ru/train",
|
293 |
+
"mr-tydi/sw",
|
294 |
+
"mr-tydi/sw/dev",
|
295 |
+
"mr-tydi/sw/test",
|
296 |
+
"mr-tydi/sw/train",
|
297 |
+
"mr-tydi/te",
|
298 |
+
"mr-tydi/te/dev",
|
299 |
+
"mr-tydi/te/test",
|
300 |
+
"mr-tydi/te/train",
|
301 |
+
"mr-tydi/th",
|
302 |
+
"mr-tydi/th/dev",
|
303 |
+
"mr-tydi/th/test",
|
304 |
+
"mr-tydi/th/train",
|
305 |
+
"msmarco-document-v2/dev1",
|
306 |
+
"msmarco-document-v2/dev2",
|
307 |
+
"msmarco-document-v2/train",
|
308 |
+
"msmarco-document-v2/trec-dl-2019",
|
309 |
+
"msmarco-document-v2/trec-dl-2019/judged",
|
310 |
+
"msmarco-document-v2/trec-dl-2020",
|
311 |
+
"msmarco-document-v2/trec-dl-2020/judged",
|
312 |
+
"msmarco-document-v2/trec-dl-2021",
|
313 |
+
"msmarco-document-v2/trec-dl-2021/judged",
|
314 |
+
"msmarco-document-v2/trec-dl-2022",
|
315 |
+
"msmarco-document-v2/trec-dl-2022/judged",
|
316 |
+
"msmarco-document/dev",
|
317 |
+
"msmarco-document/orcas",
|
318 |
+
"msmarco-document/train",
|
319 |
+
"msmarco-document/trec-dl-2019",
|
320 |
+
"msmarco-document/trec-dl-2019/judged",
|
321 |
+
"msmarco-document/trec-dl-2020",
|
322 |
+
"msmarco-document/trec-dl-2020/judged",
|
323 |
+
"msmarco-document/trec-dl-hard",
|
324 |
+
"msmarco-document/trec-dl-hard/fold1",
|
325 |
+
"msmarco-document/trec-dl-hard/fold2",
|
326 |
+
"msmarco-document/trec-dl-hard/fold3",
|
327 |
+
"msmarco-document/trec-dl-hard/fold4",
|
328 |
+
"msmarco-document/trec-dl-hard/fold5",
|
329 |
+
"msmarco-passage-v2/dev1",
|
330 |
+
"msmarco-passage-v2/dev2",
|
331 |
+
"msmarco-passage-v2/train",
|
332 |
+
"msmarco-passage-v2/trec-dl-2021",
|
333 |
+
"msmarco-passage-v2/trec-dl-2021/judged",
|
334 |
+
"msmarco-passage-v2/trec-dl-2022",
|
335 |
+
"msmarco-passage-v2/trec-dl-2022/judged",
|
336 |
+
"msmarco-passage/dev",
|
337 |
+
"msmarco-passage/dev/2",
|
338 |
+
"msmarco-passage/dev/judged",
|
339 |
+
"msmarco-passage/dev/small",
|
340 |
+
"msmarco-passage/train",
|
341 |
+
"msmarco-passage/train/judged",
|
342 |
+
"msmarco-passage/train/medical",
|
343 |
+
"msmarco-passage/train/split200-train",
|
344 |
+
"msmarco-passage/train/split200-valid",
|
345 |
+
"msmarco-passage/train/triples-small",
|
346 |
+
"msmarco-passage/train/triples-v2",
|
347 |
+
"msmarco-passage/trec-dl-2019",
|
348 |
+
"msmarco-passage/trec-dl-2019/judged",
|
349 |
+
"msmarco-passage/trec-dl-2020",
|
350 |
+
"msmarco-passage/trec-dl-2020/judged",
|
351 |
+
"msmarco-passage/trec-dl-hard",
|
352 |
+
"msmarco-passage/trec-dl-hard/fold1",
|
353 |
+
"msmarco-passage/trec-dl-hard/fold2",
|
354 |
+
"msmarco-passage/trec-dl-hard/fold3",
|
355 |
+
"msmarco-passage/trec-dl-hard/fold4",
|
356 |
+
"msmarco-passage/trec-dl-hard/fold5",
|
357 |
+
"msmarco-qna/dev",
|
358 |
+
"msmarco-qna/train",
|
359 |
+
"natural-questions/dev",
|
360 |
+
"natural-questions/train",
|
361 |
+
"neuclir/1/fa/hc4-filtered",
|
362 |
+
"neuclir/1/ru/hc4-filtered",
|
363 |
+
"neuclir/1/zh/hc4-filtered",
|
364 |
+
"neumarco/fa/dev",
|
365 |
+
"neumarco/fa/dev/judged",
|
366 |
+
"neumarco/fa/dev/small",
|
367 |
+
"neumarco/fa/train",
|
368 |
+
"neumarco/fa/train/judged",
|
369 |
+
"neumarco/ru/dev",
|
370 |
+
"neumarco/ru/dev/judged",
|
371 |
+
"neumarco/ru/dev/small",
|
372 |
+
"neumarco/ru/train",
|
373 |
+
"neumarco/ru/train/judged",
|
374 |
+
"neumarco/zh/dev",
|
375 |
+
"neumarco/zh/dev/judged",
|
376 |
+
"neumarco/zh/dev/small",
|
377 |
+
"neumarco/zh/train",
|
378 |
+
"neumarco/zh/train/judged",
|
379 |
+
"nfcorpus/dev",
|
380 |
+
"nfcorpus/dev/nontopic",
|
381 |
+
"nfcorpus/dev/video",
|
382 |
+
"nfcorpus/test",
|
383 |
+
"nfcorpus/test/nontopic",
|
384 |
+
"nfcorpus/test/video",
|
385 |
+
"nfcorpus/train",
|
386 |
+
"nfcorpus/train/nontopic",
|
387 |
+
"nfcorpus/train/video",
|
388 |
+
"nyt/trec-core-2017",
|
389 |
+
"nyt/wksup",
|
390 |
+
"nyt/wksup/train",
|
391 |
+
"nyt/wksup/valid",
|
392 |
+
"pmc/v1/trec-cds-2014",
|
393 |
+
"pmc/v1/trec-cds-2015",
|
394 |
+
"pmc/v2/trec-cds-2016",
|
395 |
+
"sara",
|
396 |
+
"touche-image/2022-06-13/touche-2022-task-3",
|
397 |
+
"trec-arabic/ar2001",
|
398 |
+
"trec-arabic/ar2002",
|
399 |
+
"trec-cast/v0/train",
|
400 |
+
"trec-cast/v0/train/judged",
|
401 |
+
"trec-cast/v1/2019",
|
402 |
+
"trec-cast/v1/2019/judged",
|
403 |
+
"trec-cast/v1/2020",
|
404 |
+
"trec-cast/v1/2020/judged",
|
405 |
+
"trec-fair-2021/eval",
|
406 |
+
"trec-fair-2021/train",
|
407 |
+
"trec-fair/2021/eval",
|
408 |
+
"trec-fair/2021/train",
|
409 |
+
"trec-fair/2022/train",
|
410 |
+
"trec-mandarin/trec5",
|
411 |
+
"trec-mandarin/trec6",
|
412 |
+
"trec-robust04",
|
413 |
+
"trec-robust04/fold1",
|
414 |
+
"trec-robust04/fold2",
|
415 |
+
"trec-robust04/fold3",
|
416 |
+
"trec-robust04/fold4",
|
417 |
+
"trec-robust04/fold5",
|
418 |
+
"trec-spanish/trec3",
|
419 |
+
"trec-spanish/trec4",
|
420 |
+
"trec-tot/2023/dev",
|
421 |
+
"trec-tot/2023/train",
|
422 |
+
"tripclick/train",
|
423 |
+
"tripclick/train/head",
|
424 |
+
"tripclick/train/head/dctr",
|
425 |
+
"tripclick/train/hofstaetter-triples",
|
426 |
+
"tripclick/train/tail",
|
427 |
+
"tripclick/train/torso",
|
428 |
+
"tripclick/val",
|
429 |
+
"tripclick/val/head",
|
430 |
+
"tripclick/val/head/dctr",
|
431 |
+
"tripclick/val/tail",
|
432 |
+
"tripclick/val/torso",
|
433 |
+
"tweets2013-ia/trec-mb-2013",
|
434 |
+
"tweets2013-ia/trec-mb-2014",
|
435 |
+
"vaswani",
|
436 |
+
"wapo/v2/trec-core-2018",
|
437 |
+
"wapo/v2/trec-news-2018",
|
438 |
+
"wapo/v2/trec-news-2019",
|
439 |
+
"wikiclir/ar",
|
440 |
+
"wikiclir/ca",
|
441 |
+
"wikiclir/cs",
|
442 |
+
"wikiclir/de",
|
443 |
+
"wikiclir/en-simple",
|
444 |
+
"wikiclir/es",
|
445 |
+
"wikiclir/fi",
|
446 |
+
"wikiclir/fr",
|
447 |
+
"wikiclir/it",
|
448 |
+
"wikiclir/ja",
|
449 |
+
"wikiclir/ko",
|
450 |
+
"wikiclir/nl",
|
451 |
+
"wikiclir/nn",
|
452 |
+
"wikiclir/no",
|
453 |
+
"wikiclir/pl",
|
454 |
+
"wikiclir/pt",
|
455 |
+
"wikiclir/ro",
|
456 |
+
"wikiclir/ru",
|
457 |
+
"wikiclir/sv",
|
458 |
+
"wikiclir/sw",
|
459 |
+
"wikiclir/tl",
|
460 |
+
"wikiclir/tr",
|
461 |
+
"wikiclir/uk",
|
462 |
+
"wikiclir/vi",
|
463 |
+
"wikiclir/zh",
|
464 |
+
"wikir/en1k/test",
|
465 |
+
"wikir/en1k/training",
|
466 |
+
"wikir/en1k/validation",
|
467 |
+
"wikir/en59k/test",
|
468 |
+
"wikir/en59k/training",
|
469 |
+
"wikir/en59k/validation",
|
470 |
+
"wikir/en78k/test",
|
471 |
+
"wikir/en78k/training",
|
472 |
+
"wikir/en78k/validation",
|
473 |
+
"wikir/ens78k/test",
|
474 |
+
"wikir/ens78k/training",
|
475 |
+
"wikir/ens78k/validation",
|
476 |
+
"wikir/es13k/test",
|
477 |
+
"wikir/es13k/training",
|
478 |
+
"wikir/es13k/validation",
|
479 |
+
"wikir/fr14k/test",
|
480 |
+
"wikir/fr14k/training",
|
481 |
+
"wikir/fr14k/validation",
|
482 |
+
"wikir/it16k/test",
|
483 |
+
"wikir/it16k/training",
|
484 |
+
"wikir/it16k/validation"
|
485 |
+
]
|
requirements.txt
CHANGED
@@ -7,4 +7,5 @@ pyserini==0.21.0
|
|
7 |
torch==2.0.1
|
8 |
plotly==5.15.0
|
9 |
captum==0.6.0
|
10 |
-
protobuf==
|
|
|
|
7 |
torch==2.0.1
|
8 |
plotly==5.15.0
|
9 |
captum==0.6.0
|
10 |
+
protobuf==3.20.0
|
11 |
+
beautifulsoup4==4.12.2
|
scripts/collect_ir_dataset_names.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from bs4 import BeautifulSoup
|
3 |
+
import re
|
4 |
+
import json
|
5 |
+
import os
|
6 |
+
import pathlib
|
7 |
+
import shutil
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
def get_ir_dataset_names():
|
12 |
+
url = "https://raw.githubusercontent.com/allenai/ir_datasets/master/ir_datasets/etc/metadata.json"
|
13 |
+
# read in the json
|
14 |
+
with requests.get(url) as r:
|
15 |
+
data = json.loads(r.text)
|
16 |
+
names = []
|
17 |
+
for dataset in data:
|
18 |
+
if "docs" in data[dataset] and "queries" in data[dataset] and "qrels" in data[dataset]:
|
19 |
+
names.append(dataset)
|
20 |
+
return names
|
21 |
+
|
22 |
+
|
23 |
+
if __name__ == "__main__":
|
24 |
+
names = get_ir_dataset_names()
|
25 |
+
with open("ir_dataset_names.json", "w") as fout:
|
26 |
+
json.dump(names, fout, indent=4)
|