import streamlit as st import os import pathlib import beir from beir import util from beir.datasets.data_loader import GenericDataLoader import pytrec_eval import pandas as pd from collections import defaultdict import json import copy import plotly.express as px from constants import ALL_DATASETS, ALL_METRICS from dataset_loading import get_dataset, load_run, load_local_qrels, load_local_corpus, load_local_queries from analysis import create_boxplot_1df, create_boxplot_2df, create_boxplot_diff, get_model, prep_func os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" st.set_page_config(layout="wide") if 'cur_instance_num' not in st.session_state: st.session_state.cur_instance_num = -1 def update_details(run_details, run_score): if run_score == 0: run_details["none"] += 1 elif run_score == 1: run_details["perfect"] += 1 else: run_details["inbetween"] += 1 return run_details def check_valid_args(run1_file, run2_file, dataset_name, qrels, queries, corpus): if run1_file is not None and dataset_name not in ["", None, "custom"]: return True elif run1_file is not None and dataset_name == "custom": if qrels is not None and queries is not None and corpus is not None: return True return False def validate(config_option, file_loaded): if config_option != "None" and file_loaded is None: st.error("Please upload a file for " + config_option) st.stop() def combine(text_og, text_new, combine_type): if combine_type == "None": return text_og elif combine_type == "Append": return text_og + " " + text_new elif combine_type == "Prepend": return text_new + " " + text_og elif combine_type == "Replace": return text_new else: raise ValueError("Invalid combine type") with st.sidebar: st.title("Options") dataset_name = st.selectbox("Select a preloaded dataset or upload your own (note: some datasets are large/slow)", tuple(ALL_DATASETS)) if st.checkbox("Choose fields (applies to IR_Datasets only)"): input_fields_doc = st.text_input("Type the name of the doc fields to get, with commas (blank=all)") if input_fields_doc in ["", None]: input_fields_doc = None input_fields_query = st.sidebar.text_input("Type the name of the query fields to get, with commas (blank=all)") if input_fields_query in ["", None]: input_fields_query = None else: input_fields_doc = None input_fields_query = None metric_name = st.selectbox("Select a metric", tuple(ALL_METRICS)) if dataset_name == "custom": st.header("Upload corpus") corpus_file = st.file_uploader("Choose a file", key="corpus") corpus = load_local_corpus(corpus_file) st.header("Upload queries") queries_file = st.file_uploader("Choose a file", key="queries") queries = load_local_queries(queries_file) st.header("Upload qrels") qrels_file = st.file_uploader("Choose a file", key="qrels") qrels = load_local_qrels(qrels_file) else: qrels = None queries = None corpus = None x = st.header('Upload a run file') run1_file = st.file_uploader("Choose a file", key="run1") y = st.header("Upload a second run file") run2_file = st.file_uploader("Choose a file", key="run2") z = st.header("Analysis Options") # sliderbar of how many Top N to choose top_n = st.slider("Top N Ranked Docs", 1, 100, 3) n_relevant_docs = st.slider("Number of relevant docs", 1, 100, 3) incorrect_only = st.checkbox("Show only incorrect instances", value=False) one_better_than_two = st.checkbox("Show only instances where run 1 is better than run 2", value=False) two_better_than_one = st.checkbox("Show only instances where run 2 is better than run 1", value=False) use_model_saliency = st.checkbox("Use model saliency (slow!)", value=False) if use_model_saliency: # choose from a list of models model_name = st.selectbox("Choose from a list of models", ["MonoT5-Small", "MonoT5-3B"]) model, formatter = get_model(model_name) get_saliency = prep_func(model, formatter) advanced_options1 = st.checkbox("Show advanced options for Run 1", value=False) doc_expansion1 = doc_expansion2 = None query_expansion1 = query_expansion2 = None run1_uses_query_expansion = "None" run1_uses_doc_expansion = "None" run2_uses_query_expansion = "None" run2_uses_doc_expansion = "None" if advanced_options1: doc_header = st.header("Upload a Document Expansion file") doc_expansion_file = st.file_uploader("Choose a file", key="doc_expansion") if doc_expansion_file is not None: doc_expansion1 = load_local_corpus(doc_expansion_file) query_header = st.header("Upload a Query Expansion file") query_expansion_file = st.file_uploader("Choose a file", key="query_expansion") if query_expansion_file is not None: query_expansion1 = load_local_queries(query_expansion_file) run1_uses_query_expansion = st.selectbox("Type of query expansion used in run 1", ("None", "Append", "Prepend", "Replace")) run1_uses_doc_expansion = st.selectbox("Type of document expansion used in run 1", ("None", "Append", "Prepend", "Replace")) validate(run1_uses_query_expansion, query_expansion_file) validate(run1_uses_doc_expansion, doc_expansion_file) advanced_options2 = st.checkbox("Show advanced options for Run 2", value=False) if advanced_options2: doc_header = st.header("Upload a Document Expansion file") doc_expansion_file = st.file_uploader("Choose a file", key="doc_expansion2") if doc_expansion_file is not None: doc_expansion2 = load_local_corpus(doc_expansion_file) query_header = st.header("Upload a Query Expansion file") query_expansion_file = st.file_uploader("Choose a file", key="query_expansion2") if query_expansion_file is not None: query_expansion2 = load_local_queries(query_expansion_file) run2_uses_query_expansion = st.selectbox("Type of query expansion used in run 2", ("None", "Append", "Prepend", "Replace")) run2_uses_doc_expansion = st.selectbox("Type of document expansion used in run 2", ("None", "Append", "Prepend", "Replace")) validate(run2_uses_query_expansion, query_expansion_file) validate(run2_uses_doc_expansion, doc_expansion_file) # everything hinges on the run being uploaded, so do that first # init_title = st.title("Upload Run and Choose Details") if run1_file is not None: run1, run1_pandas = load_run(run1_file) # do everything, now that we have the run file if check_valid_args(run1_file, run2_file, dataset_name, qrels, queries, corpus): # init_title = st.title("Analysis") # don't load these til a run is given if dataset_name != "custom": corpus, queries, qrels = get_dataset(dataset_name, input_fields_doc, input_fields_query) evaluator = pytrec_eval.RelevanceEvaluator( copy.deepcopy(qrels), pytrec_eval.supported_measures) results1 = evaluator.evaluate(run1) # dict of instance then metrics then values average_run1_score = pytrec_eval.compute_aggregated_measure(metric_name, [query_measures[metric_name] for query_measures in results1.values()]) if len(results1) == 0: # alert and stop st.error("Run file is empty") st.stop() if run2_file is not None: run2, run2_pandas = load_run(run2_file) # NOTE: will fail if run1 is not uploaded evaluator2 = pytrec_eval.RelevanceEvaluator( copy.deepcopy(qrels), pytrec_eval.supported_measures) results2 = evaluator2.evaluate(run2) average_run2_score = pytrec_eval.compute_aggregated_measure(metric_name, [query_measures[metric_name] for query_measures in results2.values()]) col1, col2 = st.columns([1, 3], gap="large") # incorrect = 0 is_better_run1_count = 0 is_better_run2_count = 0 is_same_count = 0 run1_details = {"none": 0, "perfect": 0, "inbetween": 0} run2_details = {"none": 0, "perfect": 0, "inbetween": 0} with col1: st.title("Instances") if run1_file is not None: set_of_cols = set(run1_pandas.qid.tolist()) container_for_nav = st.container() name_of_columns = sorted([item for item in set_of_cols]) instances_to_use = [] # st.divider() for idx in range(len(name_of_columns)): is_incorrect = False is_better_run1 = False is_better_run2 = False run1_score = results1[str(name_of_columns[idx])][metric_name] if idx else 1 run1_details = update_details(run1_details, run1_score) if run2_file is not None: run2_score = results2[str(name_of_columns[idx])][metric_name] if idx else 1 run2_details = update_details(run2_details, run2_score) if run1_score == 0 or run2_score == 0: is_incorrect = True if run1_score > run2_score: is_better_run1_count += 1 is_better_run1 = True elif run2_score > run1_score: is_better_run2_count += 1 is_better_run2 = True else: is_same_count += 1 if not incorrect_only or is_incorrect: if not one_better_than_two or is_better_run1: if not two_better_than_one or is_better_run2: # check = st.checkbox(f"{idx}. " + str(name_of_columns[idx]), key=f"{idx}check") # st.divider() instances_to_use.append(name_of_columns[idx]) else: if run1_score == 0: is_incorrect = True if not incorrect_only or is_incorrect: # check = st.checkbox(f"{idx}. " + str(name_of_columns[idx]), key=f"{idx}check") # st.divider() instances_to_use.append(name_of_columns[idx]) def sync_from_drop(): if st.session_state.selectbox_instance == "Overview": st.session_state.number_of_col = -1 st.session_state.cur_instance_num = -1 else: index_of_obj = name_of_columns.index(st.session_state.selectbox_instance) # print("Index of obj: ", index_of_obj, type(index_of_obj)) st.session_state.number_of_col = index_of_obj st.session_state.cur_instance_num = index_of_obj def sync_from_number(): st.session_state.cur_instance_num = st.session_state.number_of_col # print("Session state number of col: ", st.session_state.number_of_col, type(st.session_state.number_of_col)) if st.session_state.number_of_col == -1: st.session_state.selectbox_instance = "Overview" else: st.session_state.selectbox_instance = name_of_columns[st.session_state.number_of_col] number_of_col = container_for_nav.number_input(min_value=-1, step=1, max_value=len(instances_to_use) - 1, on_change=sync_from_number, label=f"Select instance by index (up to **{len(instances_to_use) - 1}**)", key="number_of_col") selectbox_instance = container_for_nav.selectbox("Select instance by ID", ["Overview"] + name_of_columns, on_change=sync_from_drop, key="selectbox_instance") st.divider() # make pie plot showing incorrect vs correct st.header("Breakdown") if run2_file is None: overall_scores_container = st.container() left_score, right_score = overall_scores_container.columns([1, 1]) left_score.metric(label=f"Run 1 {metric_name}", value=round(average_run1_score, 3)) right_score.metric(label="#Q", value=len(results1)) plotly_pie_chart = px.pie(names=["Perfect", "Inbetween", "None"], values=[run1_details["perfect"], run1_details["inbetween"], run1_details["none"]]) st.write("Run 1 Scores") plotly_pie_chart.update_traces(showlegend=False, selector=dict(type='pie'), textposition='inside', textinfo='percent+label') st.plotly_chart(plotly_pie_chart, use_container_width=True) else: overall_scores_container = st.container() left_score, right_score = overall_scores_container.columns([1, 1]) left_score.metric(label=f"Run 1 {metric_name}", value=round(average_run1_score, 3)) right_score.metric(label=f"Run 2 {metric_name}", value=round(average_run2_score, 3)) if st.checkbox("Show Run 1 vs Run 2", value=True): plotly_pie_chart = px.pie(names=["Run 1 Better", "Run 2 Better", "Tied"], values=[is_better_run1_count, is_better_run2_count, is_same_count]) plotly_pie_chart.update_traces(showlegend=False, selector=dict(type='pie'), textposition='inside', textinfo='percent+label') st.plotly_chart(plotly_pie_chart, use_container_width=True) if st.checkbox("Show Run 1 Breakdown"): plotly_pie_chart_run1 = px.pie(names=["Perfect", "Inbetween", "None"], values=[run1_details["perfect"], run1_details["inbetween"], run1_details["none"]]) plotly_pie_chart_run1.update_traces(showlegend=False, selector=dict(type='pie'), textposition='inside', textinfo='percent+label') st.plotly_chart(plotly_pie_chart_run1, use_container_width=True) if st.checkbox("Show Run 2 Breakdown"): plotly_pie_chart_run2 = px.pie(names=["Perfect", "Inbetween", "None"], values=[run2_details["perfect"], run2_details["inbetween"], run2_details["none"]]) plotly_pie_chart_run2.update_traces(showlegend=False, selector=dict(type='pie'), textposition='inside', textinfo='percent+label') st.plotly_chart(plotly_pie_chart_run2, use_container_width=True) with col2: # st.title(f"Information ({len(checkboxes) - 1}/{len(name_of_columns) - 1})") ### Only one run file if run1_file is not None and run2_file is None: # get instance number inst_index = number_of_col if inst_index >= 0: inst_num = instances_to_use[inst_index - 1] st.markdown("

Run 1

", unsafe_allow_html=True) container = st.container() rank_col, score_col, id_col = container.columns([2,1,3]) id_col.metric("ID", inst_num) score_col.metric(metric_name, results1[str(inst_num)][metric_name]) # st.subheader(f"ID") # st.markdown(inst_num) st.divider() st.subheader(f"Query") if run1_uses_query_expansion != "None": show_orig_rel = st.checkbox("Show Original Query", key=f"{inst_index}reloriguery", value=False) query_text_og = queries[str(inst_num)] if query_expansion1 is not None and run1_uses_query_expansion != "None" and not show_orig_rel: alt_text = query_expansion1[str(inst_num)] query_text = combine(query_text_og, alt_text, run1_uses_query_expansion) else: query_text = query_text_og st.markdown(query_text) st.divider() ## Documents # relevant relevant_docs = list(qrels[str(inst_num)].keys())[:n_relevant_docs] doc_texts = [(doc_id, corpus[doc_id]["title"] if "title" in corpus[doc_id] else "", corpus[doc_id]["text"]) for doc_id in relevant_docs] st.subheader("Relevant Documents") if doc_expansion1 is not None and run1_uses_doc_expansion != "None": show_orig_rel = st.checkbox("Show Original Relevant Doc(s)", key=f"{inst_index}relorig", value=False) for (docid, title, text) in doc_texts: if doc_expansion1 is not None and run1_uses_doc_expansion != "None" and not show_orig_rel: alt_text = doc_expansion1[docid]["text"] text = combine(text, alt_text, run1_uses_doc_expansion) if use_model_saliency: if st.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency", value=False): st.markdown(get_saliency(query_text, doc_texts),unsafe_allow_html=True) else: st.text_area(f"{docid}:", text) else: st.text_area(f"{docid}:", text) # go through each of the relevant documents ranks = [] for docid in relevant_docs: pred_doc = run1_pandas[run1_pandas.doc_id.isin([docid])] rank_pred = pred_doc[pred_doc.qid == str(inst_num)] if rank_pred.empty: ranks.append("-") else: ranks.append(rank_pred.iloc[0]["rank"]) # st.subheader("Ranked of Documents") # st.markdown(f"Rank: {rank_pred}") ranking_str = ",".join([str(item) for item in ranks]) if ranking_str == "": ranking_str = "-" rank_col.metric(f"Rank of Relevant Doc(s)", ranking_str) # breakpoint() st.divider() # top ranked if st.checkbox('Show top ranked documents', key=f"{inst_index}top-1run"): st.subheader("Top N Ranked Documents") if doc_expansion1 is not None and run1_uses_doc_expansion != "None": show_orig_rel_ranked = st.checkbox("Show Original Ranked Doc(s)", key=f"{inst_index}relorigdocs", value=False) run1_top_n = run1_pandas[run1_pandas.qid == str(inst_num)][:top_n] run1_top_n_docs = [corpus[str(doc_id)] for doc_id in run1_top_n.doc_id.tolist()] if doc_expansion1 is not None and run1_uses_doc_expansion != "None" and not show_orig_rel_ranked: run1_top_n_docs_alt = [doc_expansion1[str(doc_id)] for doc_id in run1_top_n.doc_id.tolist()] for d_idx, doc in enumerate(run1_top_n_docs): alt_text = run1_top_n_docs_alt[d_idx]["text"] doc_text = combine(doc["text"], alt_text, run1_uses_doc_expansion) if use_model_saliency: if st.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency", value=False): st.markdown(get_saliency(query_text, doc_text),unsafe_allow_html=True) else: st.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc_text, key=f"{inst_num}doc{d_idx}") else: st.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc_text, key=f"{inst_num}doc{d_idx}") else: for d_idx, doc in enumerate(run1_top_n_docs): if use_model_saliency: if st.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency{d_idx}ranked", value=False): st.markdown(get_saliency(query_text, doc),unsafe_allow_html=True) else: st.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc["text"], key=f"{inst_num}doc{d_idx}") else: st.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc["text"], key=f"{inst_num}doc{d_idx}") st.divider() # none checked elif inst_index < 0: st.title("Overview") st.subheader(f"Scores of {metric_name}") plotly_chart = create_boxplot_1df(results1, metric_name) st.plotly_chart(plotly_chart) ## Both run files available elif run1_file is not None and run2_file is not None: has_check = False container_top = st.container() # get instance number inst_index = number_of_col if inst_index >= 0: inst_num = instances_to_use[inst_index] col_run1, col_run2 = container_top.columns([1,1]) col_run1.markdown("

Run 1

", unsafe_allow_html=True) col_run2.markdown("

Run 2

", unsafe_allow_html=True) container_overview = st.container() rank_col1, score_col1, rank_col2, score_col2 = container_overview.columns([2,1,2,1]) # id_col1.metric("", "") score_col1.metric("Run 1 " + metric_name, results1[str(inst_num)][metric_name]) score_col2.metric("Run 2 " + metric_name, results2[str(inst_num)][metric_name]) st.divider() st.subheader(f"Query") container_two_query = st.container() col_run1, col_run2 = container_two_query.columns(2, gap="medium") query_text_og = queries[str(inst_num)] if run1_uses_query_expansion != "None" and run2_uses_query_expansion != "None": alt_text1 = query_expansion1[str(inst_num)] alt_text2 = query_expansion2[str(inst_num)] combined_text1 = combine(query_text_og, alt_text1, run1_uses_query_expansion) combined_text2 = combine(query_text_og, alt_text2, run2_uses_query_expansion) col_run1.markdown(combined_text1) col_run2.markdown(combined_text2) query_text1 = combined_text1 query_text2 = combined_text2 elif run1_uses_query_expansion != "None": alt_text = query_expansion1[str(inst_num)] combined_text1 = combine(query_text_og, alt_text, run1_uses_query_expansion) col_run1.markdown(combined_text1) col_run2.markdown(query_text_og) query_text1 = combined_text1 query_text2 = query_text_og elif run2_uses_query_expansion != "None": alt_text = query_expansion2[str(inst_num)] combined_text2 = combine(query_text_og, alt_text, run2_uses_query_expansion) col_run1.markdown(query_text_og) col_run2.markdown(combined_text2) query_text1 = query_text_og query_text2 = combined_text2 else: query_text = query_text_og col_run1.markdown(query_text) col_run2.markdown(query_text) query_text1 = query_text query_text2 = query_text st.divider() ## Documents # relevant st.subheader("Relevant Documents") container_two_docs_rel = st.container() col_run1, col_run2 = container_two_docs_rel.columns(2, gap="medium") relevant_docs = list(qrels[str(inst_num)].keys())[:n_relevant_docs] relevant_score = {ind_doc_id: item[str(inst_num)][ind_doc_id] for ind_doc_id in relevant_docs} doc_texts = [(doc_id, corpus[doc_id]["title"] if "title" in corpus[doc_id] else "", corpus[doc_id]["text"], relevance_score[doc_id]) for doc_id in relevant_docs] if doc_expansion1 is not None and run1_uses_doc_expansion != "None": show_orig_rel1 = col_run1.checkbox("Show Original Relevant Doc(s)", key=f"{inst_index}relorig_run1", value=False) if doc_expansion2 is not None and run2_uses_doc_expansion != "None": show_orig_rel2 = col_run2.checkbox("Show Original Relevant Doc(s)", key=f"{inst_index}relorig_run2", value=False) for (docid, title, text, rel_score) in doc_texts: if doc_expansion1 is not None and run1_uses_doc_expansion != "None" and not show_orig_rel1: alt_text = doc_expansion1[docid]["text"] text = combine(text, alt_text, run1_uses_doc_expansion) if use_model_saliency: if col_run1.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency{docid}relevant", value=False): col_run1.markdown(get_saliency(query_text1, text),unsafe_allow_html=True) else: col_run1.text_area(f"{docid} (Rel: {rel_score}):", text, key=f"{inst_num}doc{docid}1") else: col_run1.text_area(f"{docid} (Rel: {rel_score}):", text, key=f"{inst_num}doc{docid}1") for (docid, title, text, rel_score) in doc_texts: if doc_expansion2 is not None and run2_uses_doc_expansion != "None" and not show_orig_rel2: alt_text = doc_expansion2[docid]["text"] if docid in doc_expansion2 else "" text = combine(text, alt_text, run2_uses_doc_expansion) if use_model_saliency: if col_run2.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency{docid}relevant2", value=False): col_run2.markdown(get_saliency(query_text2, text),unsafe_allow_html=True) else: col_run2.text_area(f"{docid}: (Rel: {rel_score})", text, key=f"{inst_num}doc{docid}2") else: col_run2.text_area(f"{docid}: (Rel: {rel_score})", text, key=f"{inst_num}doc{docid}2") # top ranked # NOTE: BEIR calls trec_eval which ranks by score, then doc_id for ties # we have to fix that or we don't match the scores ranks2 = [] for docid in relevant_docs: pred_doc = run2_pandas[run2_pandas.doc_id.isin([docid])] rank_pred = pred_doc[pred_doc.qid == str(inst_num)] if rank_pred.empty: ranks2.append("-") else: ranks2.append(rank_pred.iloc[0]["rank"]) # st.subheader("Ranked of Documents") # st.markdown(f"Rank: {rank_pred}") ranking_str2 = ",".join([str(item) for item in ranks2]) if ranking_str2 == "": ranking_str2 = "-" rank_col2.metric("Run 2 " + f"Rank of Relevant Doc(s)", ranking_str2) ranks1 = [] for docid in relevant_docs: pred_doc = run1_pandas[run1_pandas.doc_id.isin([docid])] rank_pred = pred_doc[pred_doc.qid == str(inst_num)] if rank_pred.empty: ranks1.append("-") else: ranks1.append(rank_pred.iloc[0]["rank"]) # st.subheader("Ranked of Documents") # st.markdown(f"Rank: {rank_pred}") ranking_str1 = ",".join([str(item) for item in ranks1]) if ranking_str1 == "": ranking_str1 = "-" rank_col1.metric("Run 1 " + f"Rank of Relevant Doc(s)", ranking_str1) st.divider() container_two_docs_ranked = st.container() col_run1, col_run2 = container_two_docs_ranked.columns(2, gap="medium") if col_run1.checkbox('Show top ranked documents for Run 1', key=f"{inst_index}top-1run"): col_run1.subheader("Top N Ranked Documents") if doc_expansion1 is not None and run1_uses_doc_expansion != "None": show_orig_rel_ranked1 = col_run1.checkbox("Show Original Ranked Doc(s)", key=f"{inst_index}relorigdocs1", value=False) run1_top_n = run1_pandas[run1_pandas.qid == str(inst_num)].sort_values(["score", "doc_id"], ascending=[False, False])[:top_n] run1_top_n_docs = [corpus[str(doc_id)] for doc_id in run1_top_n.doc_id.tolist()] if doc_expansion1 is not None and run1_uses_doc_expansion != "None" and not show_orig_rel_ranked1: run1_top_n_docs_alt = [doc_expansion1[str(doc_id)] for doc_id in run1_top_n.doc_id.tolist()] for d_idx, doc in enumerate(run1_top_n_docs): alt_text = run1_top_n_docs_alt[d_idx]["text"] doc_text = combine(doc["text"], alt_text, run1_uses_doc_expansion) if use_model_saliency: if col_run1.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency{d_idx}ranked1", value=False): col_run1.markdown(get_saliency(query_text1, doc_text),unsafe_allow_html=True) else: col_run1.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc_text, key=f"{inst_num}doc{d_idx}1") else: col_run1.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc_text, key=f"{inst_num}doc{d_idx}1") else: for d_idx, doc in enumerate(run1_top_n_docs): if use_model_saliency: if col_run1.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency{d_idx}ranked1", value=False): col_run1.markdown(get_saliency(query_text1, doc),unsafe_allow_html=True) else: col_run1.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc["text"], key=f"{inst_num}doc{d_idx}1") else: col_run1.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: ", doc["text"], key=f"{inst_num}doc{d_idx}1") if col_run2.checkbox('Show top ranked documents for Run 2', key=f"{inst_index}top-2run"): col_run2.subheader("Top N Ranked Documents") if doc_expansion2 is not None and run2_uses_doc_expansion != "None": show_orig_rel_ranked2 = col_run2.checkbox("Show Original Ranked Doc(s)", key=f"{inst_index}relorigdocs2", value=False) run2_top_n = run2_pandas[run2_pandas.qid == str(inst_num)].sort_values(["score", "doc_id"], ascending=[False, False])[:top_n] run2_top_n_docs = [corpus[str(doc_id)] for doc_id in run2_top_n.doc_id.tolist()] if doc_expansion2 is not None and run2_uses_doc_expansion != "None" and not show_orig_rel_ranked2: run2_top_n_docs_alt = [doc_expansion2[str(doc_id)] for doc_id in run2_top_n.doc_id.tolist()] for d_idx, doc in enumerate(run2_top_n_docs): alt_text = run2_top_n_docs_alt[d_idx]["text"] doc_text = combine(doc["text"], alt_text, run2_uses_doc_expansion) if use_model_saliency: if col_run2.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency{d_idx}ranked2", value=False): col_run2.markdown(get_saliency(query_text2, doc_text),unsafe_allow_html=True) else: col_run2.text_area(f"{run2_top_n['doc_id'].iloc[d_idx]}: ", doc_text, key=f"{inst_num}doc{d_idx}2") else: col_run2.text_area(f"{run2_top_n['doc_id'].iloc[d_idx]}: ", doc_text, key=f"{inst_num}doc{d_idx}2") else: for d_idx, doc in enumerate(run2_top_n_docs): if use_model_saliency: if col_run2.checkbox("Show Model Saliency", key=f"{inst_index}model_saliency{d_idx}ranked2", value=False): col_run2.markdown(get_saliency(query_text2, doc),unsafe_allow_html=True) else: col_run2.text_area(f"{run2_top_n['doc_id'].iloc[d_idx]}: ", doc["text"], key=f"{inst_num}doc{d_idx}2") else: col_run2.text_area(f"{run2_top_n['doc_id'].iloc[d_idx]}: ", doc["text"], key=f"{inst_num}doc{d_idx}2") st.divider() else: st.title("Overview") st.subheader(f"Scores of {metric_name}") fig = create_boxplot_2df(results1, results2, metric_name) st.plotly_chart(fig) st.subheader(f"Score Difference of {metric_name}") fig_comp = create_boxplot_diff(results1, results2, metric_name) st.plotly_chart(fig_comp) else: st.warning("Please choose a dataset and upload a run file. If you chose \"custom\" be sure that you uploaded all files (queries, corpus, qrels)")