import streamlit as st import os import pathlib import pandas as pd from collections import defaultdict import json import copy import plotly.express as px @st.cache_data def load_local_corpus(corpus_file, columns_to_combine=["title", "text"]): if corpus_file is None: return None did2text = {} id_key = "_id" with corpus_file as f: for idx, line in enumerate(f): uses_bytes = not (type(line) == str) if uses_bytes: if idx == 0 and "doc_id" in line.decode("utf-8"): continue inst = json.loads(line.decode("utf-8")) else: if idx == 0 and "doc_id" in line: continue inst = json.loads(line) all_text = " ".join([inst[col] for col in columns_to_combine if col in inst and inst[col] is not None]) if id_key not in inst: id_key = "doc_id" did2text[inst[id_key]] = { "text": all_text, "title": inst["title"] if "title" in inst else "", } return did2text @st.cache_data def load_local_queries(queries_file): if queries_file is None: return None qid2text = {} id_key = "_id" with queries_file as f: for idx, line in enumerate(f): uses_bytes = not (type(line) == str) if uses_bytes: if idx == 0 and "query_id" in line.decode("utf-8"): continue inst = json.loads(line.decode("utf-8")) else: if idx == 0 and "query_id" in line: continue inst = json.loads(line) if id_key not in inst: id_key = "query_id" qid2text[inst[id_key]] = inst["text"] return qid2text @st.cache_data def load_local_qrels(qrels_file): if qrels_file is None: return None qid2did2label = defaultdict(dict) with qrels_file as f: for idx, line in enumerate(f): uses_bytes = not (type(line) == str) if uses_bytes: if idx == 0 and "qid" in line.decode("utf-8") or "query-id" in line.decode("utf-8"): continue cur_line = line.decode("utf-8") else: if idx == 0 and "qid" in line or "query-id" in line: continue cur_line = line try: qid, _, doc_id, label = cur_line.split() except: qid, doc_id, label = cur_line.split() qid2did2label[str(qid)][str(doc_id)] = int(label) return qid2did2label @st.cache_data def load_jsonl(f): did2text = defaultdict(list) sub_did2text = {} for idx, line in enumerate(f): inst = json.loads(line) if "question" in inst: docid = inst["metadata"][0]["passage_id"] if "doc_id" not in inst else inst["doc_id"] did2text[docid].append(inst["question"]) elif "text" in inst: docid = inst["doc_id"] if "doc_id" in inst else inst["did"] did2text[docid].append(inst["text"]) sub_did2text[inst["did"]] = inst["text"] elif "query" in inst: docid = inst["doc_id"] if "doc_id" in inst else inst["did"] did2text[docid].append(inst["query"]) else: breakpoint() raise NotImplementedError("Need to handle this case") return did2text, sub_did2text @st.cache_data(persist="disk") def get_dataset(dataset_name: str, input_fields_doc, input_fields_query): if type(input_fields_doc) == str: input_fields_doc = input_fields_doc.strip().split(",") if type(input_fields_query) == str: input_fields_query = input_fields_query.strip().split(",") if dataset_name == "": return {}, {}, {} else: raise NotImplementedError("Dataset not implemented")