File size: 20,215 Bytes
0df6405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "view-in-github",
        "colab_type": "text"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/nateraw/voice-cloning/blob/main/training_so_vits_svc_fork.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "jIcNJ5QfDsV_"
      },
      "outputs": [],
      "source": [
        "# %%capture\n",
        "! pip install git+https://github.com/nateraw/so-vits-svc-fork@main\n",
        "! pip install openai-whisper yt-dlp huggingface_hub demucs"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "6uZAhUPOhFv9"
      },
      "source": [
        "---\n",
        "\n",
        "# Restart runtime\n",
        "\n",
        "After running the cell above, you'll need to restart the Colab runtime because we installed a different version of numpy.\n",
        "\n",
        "`Runtime -> Restart runtime`\n",
        "\n",
        "---"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "DROusQatF-wF"
      },
      "outputs": [],
      "source": [
        "from huggingface_hub import login\n",
        "\n",
        "login()"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Settings"
      ],
      "metadata": {
        "id": "yOM9WWmmRqTA"
      }
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "5oTDjDEKFz3W"
      },
      "outputs": [],
      "source": [
        "CHARACTER = \"kanye\"\n",
        "DO_EXTRACT_VOCALS = False\n",
        "MODEL_REPO_ID = \"dog/kanye\""
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "BFd_ly1P_5Ht"
      },
      "source": [
        "## Data Preparation\n",
        "\n",
        "Prepare a data.csv file here with `ytid,start,end` as the first line (they're the expected column names). Then, prepare a training set given YouTube IDs and their start and end segment times in seconds. Try to pick segments that have dry vocal only, as that'll provide the best results.\n",
        "\n",
        "An example is given below for Kanye West."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "rBrtgDtWmhRb"
      },
      "outputs": [],
      "source": [
        "%%writefile data.csv\n",
        "ytid,start,end\n",
        "lkK4de9nbzQ,0,137\n",
        "gXU9Am2Seo0,30,69\n",
        "gXU9Am2Seo0,94,135\n",
        "iVgrhWvQpqU,0,55\n",
        "iVgrhWvQpqU,58,110\n",
        "UIV-q-gneKA,85,99\n",
        "UIV-q-gneKA,110,125\n",
        "UIV-q-gneKA,127,141\n",
        "UIV-q-gneKA,173,183\n",
        "GmlyYCGE9ak,0,102\n",
        "x-7aWcPmJ60,25,43\n",
        "x-7aWcPmJ60,47,72\n",
        "x-7aWcPmJ60,98,113\n",
        "DK2LCIzIBrU,0,56\n",
        "DK2LCIzIBrU,80,166\n",
        "_W56nZk0fCI,184,224"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "cxxp4uYoC0aG"
      },
      "outputs": [],
      "source": [
        "import subprocess\n",
        "from pathlib import Path\n",
        "import librosa\n",
        "from scipy.io import wavfile\n",
        "import numpy as np\n",
        "from demucs.pretrained import get_model, DEFAULT_MODEL\n",
        "from demucs.apply import apply_model\n",
        "import torch\n",
        "import csv\n",
        "import whisper\n",
        "\n",
        "\n",
        "def download_youtube_clip(video_identifier, start_time, end_time, output_filename, num_attempts=5, url_base=\"https://www.youtube.com/watch?v=\"):\n",
        "    status = False\n",
        "\n",
        "    output_path = Path(output_filename)\n",
        "    if output_path.exists():\n",
        "        return True, \"Already Downloaded\"\n",
        "\n",
        "    command = f\"\"\"\n",
        "        yt-dlp --quiet --no-warnings -x --audio-format wav -f bestaudio -o \"{output_filename}\" --download-sections \"*{start_time}-{end_time}\" \"{url_base}{video_identifier}\"\n",
        "    \"\"\".strip()\n",
        "\n",
        "    attempts = 0\n",
        "    while True:\n",
        "        try:\n",
        "            output = subprocess.check_output(command, shell=True, stderr=subprocess.STDOUT)\n",
        "        except subprocess.CalledProcessError as err:\n",
        "            attempts += 1\n",
        "            if attempts == num_attempts:\n",
        "                return status, err.output\n",
        "        else:\n",
        "            break\n",
        "\n",
        "    status = output_path.exists()\n",
        "    return status, \"Downloaded\"\n",
        "\n",
        "\n",
        "def split_long_audio(model, filepaths, character_name, save_dir=\"data_dir\", out_sr=44100):\n",
        "    if isinstance(filepaths, str):\n",
        "        filepaths = [filepaths]\n",
        "\n",
        "    for file_idx, filepath in enumerate(filepaths):\n",
        "\n",
        "        save_path = Path(save_dir) / character_name\n",
        "        save_path.mkdir(exist_ok=True, parents=True)\n",
        "\n",
        "        print(f\"Transcribing file {file_idx}: '{filepath}' to segments...\")\n",
        "        result = model.transcribe(filepath, word_timestamps=True, task=\"transcribe\", beam_size=5, best_of=5)\n",
        "        segments = result['segments']\n",
        "    \n",
        "        wav, sr = librosa.load(filepath, sr=None, offset=0, duration=None, mono=True)\n",
        "        wav, _ = librosa.effects.trim(wav, top_db=20)\n",
        "        peak = np.abs(wav).max()\n",
        "        if peak > 1.0:\n",
        "            wav = 0.98 * wav / peak\n",
        "        wav2 = librosa.resample(wav, orig_sr=sr, target_sr=out_sr)\n",
        "        wav2 /= max(wav2.max(), -wav2.min())\n",
        "\n",
        "        for i, seg in enumerate(segments):\n",
        "            start_time = seg['start']\n",
        "            end_time = seg['end']\n",
        "            wav_seg = wav2[int(start_time * out_sr):int(end_time * out_sr)]\n",
        "            wav_seg_name = f\"{character_name}_{file_idx}_{i}.wav\"\n",
        "            out_fpath = save_path / wav_seg_name\n",
        "            wavfile.write(out_fpath, rate=out_sr, data=(wav_seg * np.iinfo(np.int16).max).astype(np.int16))\n",
        "\n",
        "\n",
        "def extract_vocal_demucs(model, filename, out_filename, sr=44100, device=None, shifts=1, split=True, overlap=0.25, jobs=0):\n",
        "    wav, sr = librosa.load(filename, mono=False, sr=sr)\n",
        "    wav = torch.tensor(wav)\n",
        "    ref = wav.mean(0)\n",
        "    wav = (wav - ref.mean()) / ref.std()\n",
        "    sources = apply_model(\n",
        "        model,\n",
        "        wav[None],\n",
        "        device=device,\n",
        "        shifts=shifts,\n",
        "        split=split,\n",
        "        overlap=overlap,\n",
        "        progress=True,\n",
        "        num_workers=jobs\n",
        "    )[0]\n",
        "    sources = sources * ref.std() + ref.mean()\n",
        "\n",
        "    wav = sources[-1]\n",
        "    wav = wav / max(1.01 * wav.abs().max(), 1)\n",
        "    wavfile.write(out_filename, rate=sr, data=wav.numpy().T)\n",
        "    return out_filename\n",
        "\n",
        "\n",
        "def create_dataset(\n",
        "    clips_csv_filepath = \"data.csv\",\n",
        "    character = \"somebody\",\n",
        "    do_extract_vocals = False,\n",
        "    whisper_size = \"medium\",\n",
        "    # Where raw yt clips will be downloaded to\n",
        "    dl_dir = \"downloads\",\n",
        "    # Where actual data will be organized\n",
        "    data_dir = \"dataset_raw\",\n",
        "    **kwargs\n",
        "):\n",
        "    dl_path = Path(dl_dir) / character\n",
        "    dl_path.mkdir(exist_ok=True, parents=True)\n",
        "    if do_extract_vocals:\n",
        "        demucs_model = get_model(DEFAULT_MODEL)\n",
        "\n",
        "    with Path(clips_csv_filepath).open() as f:\n",
        "        reader = csv.DictReader(f)\n",
        "        for i, row in enumerate(reader):\n",
        "            outfile_path = dl_path / f\"{character}_{i:04d}.wav\"\n",
        "            download_youtube_clip(row['ytid'], row['start'], row['end'], outfile_path)\n",
        "            if do_extract_vocals:\n",
        "                extract_vocal_demucs(demucs_model, outfile_path, outfile_path)\n",
        "\n",
        "    filenames = sorted([str(x) for x in dl_path.glob(\"*.wav\")])\n",
        "    whisper_model = whisper.load_model(whisper_size)\n",
        "    split_long_audio(whisper_model, filenames, character, data_dir)    "
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "D9GrcDUKEGro"
      },
      "outputs": [],
      "source": [
        "\"\"\"\n",
        "Here, we override config to have num_workers=0 because\n",
        "of a limitation in HF Spaces Docker /dev/shm.\n",
        "\"\"\"\n",
        "\n",
        "import json\n",
        "from pathlib import Path\n",
        "import multiprocessing\n",
        "\n",
        "def update_config(config_file=\"configs/44k/config.json\"):\n",
        "    config_path = Path(config_file)\n",
        "    data = json.loads(config_path.read_text())\n",
        "    data['train']['batch_size'] = 32\n",
        "    data['train']['eval_interval'] = 500\n",
        "    data['train']['num_workers'] = multiprocessing.cpu_count()\n",
        "    data['train']['persistent_workers'] = True\n",
        "    data['train']['push_to_hub'] = True\n",
        "    data['train']['repo_id'] = MODEL_REPO_ID # tuple(data['spk'])[0]\n",
        "    data['train']['private'] = True\n",
        "    config_path.write_text(json.dumps(data, indent=2, sort_keys=False))"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Run all Preprocessing Steps"
      ],
      "metadata": {
        "id": "aF6OZkTZRzhj"
      }
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "OAPnD3xKD_Gw"
      },
      "outputs": [],
      "source": [
        "create_dataset(character=CHARACTER, do_extract_vocals=DO_EXTRACT_VOCALS)\n",
        "! svc pre-resample\n",
        "! svc pre-config\n",
        "! svc pre-hubert -fm crepe\n",
        "update_config()"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Training"
      ],
      "metadata": {
        "id": "VpyGazF6R3CE"
      }
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "background_save": true
        },
        "id": "MByHpf_wEByg"
      },
      "outputs": [],
      "source": [
        "from __future__ import annotations\n",
        "\n",
        "import os\n",
        "import re\n",
        "import warnings\n",
        "from logging import getLogger\n",
        "from multiprocessing import cpu_count\n",
        "from pathlib import Path\n",
        "from typing import Any\n",
        "\n",
        "import lightning.pytorch as pl\n",
        "import torch\n",
        "from lightning.pytorch.accelerators import MPSAccelerator, TPUAccelerator\n",
        "from lightning.pytorch.loggers import TensorBoardLogger\n",
        "from lightning.pytorch.strategies.ddp import DDPStrategy\n",
        "from lightning.pytorch.tuner import Tuner\n",
        "from torch.cuda.amp import autocast\n",
        "from torch.nn import functional as F\n",
        "from torch.utils.data import DataLoader\n",
        "from torch.utils.tensorboard.writer import SummaryWriter\n",
        "\n",
        "import so_vits_svc_fork.f0\n",
        "import so_vits_svc_fork.modules.commons as commons\n",
        "import so_vits_svc_fork.utils\n",
        "\n",
        "from so_vits_svc_fork import utils\n",
        "from so_vits_svc_fork.dataset import TextAudioCollate, TextAudioDataset\n",
        "from so_vits_svc_fork.logger import is_notebook\n",
        "from so_vits_svc_fork.modules.descriminators import MultiPeriodDiscriminator\n",
        "from so_vits_svc_fork.modules.losses import discriminator_loss, feature_loss, generator_loss, kl_loss\n",
        "from so_vits_svc_fork.modules.mel_processing import mel_spectrogram_torch\n",
        "from so_vits_svc_fork.modules.synthesizers import SynthesizerTrn\n",
        "\n",
        "from so_vits_svc_fork.train import VitsLightning, VCDataModule\n",
        "\n",
        "LOG = getLogger(__name__)\n",
        "torch.set_float32_matmul_precision(\"high\")\n",
        "\n",
        "\n",
        "from pathlib import Path\n",
        "\n",
        "from huggingface_hub import create_repo, upload_folder, login, list_repo_files, delete_file\n",
        "\n",
        "# if os.environ.get(\"HF_TOKEN\"):\n",
        "#     login(os.environ.get(\"HF_TOKEN\"))\n",
        "\n",
        "\n",
        "class HuggingFacePushCallback(pl.Callback):\n",
        "    def __init__(self, repo_id, private=False, every=100):\n",
        "        self.repo_id = repo_id\n",
        "        self.private = private\n",
        "        self.every = every\n",
        "\n",
        "    def on_validation_epoch_end(self, trainer, pl_module):\n",
        "        self.repo_url = create_repo(\n",
        "            repo_id=self.repo_id,\n",
        "            exist_ok=True,\n",
        "            private=self.private\n",
        "        )\n",
        "        self.repo_id = self.repo_url.repo_id\n",
        "        if pl_module.global_step == 0:\n",
        "            return\n",
        "        print(f\"\\n🤗 Pushing to Hugging Face Hub: {self.repo_url}...\")\n",
        "        model_dir = pl_module.hparams.model_dir\n",
        "        upload_folder(\n",
        "            repo_id=self.repo_id,\n",
        "            folder_path=model_dir,\n",
        "            path_in_repo=\".\",\n",
        "            commit_message=\"🍻 cheers\",\n",
        "            ignore_patterns=[\"*.git*\", \"*README.md*\", \"*__pycache__*\"],\n",
        "        )\n",
        "        ckpt_pattern = r'^(D_|G_)\\d+\\.pth$'\n",
        "        todelete = []\n",
        "        repo_ckpts = [x for x in list_repo_files(self.repo_id) if re.match(ckpt_pattern, x) and x not in [\"G_0.pth\", \"D_0.pth\"]]\n",
        "        local_ckpts = [x.name for x in Path(model_dir).glob(\"*.pth\") if re.match(ckpt_pattern, x.name)]\n",
        "        to_delete = set(repo_ckpts) - set(local_ckpts)\n",
        "\n",
        "        for fname in to_delete:\n",
        "            print(f\"🗑 Deleting {fname} from repo\")\n",
        "            delete_file(fname, self.repo_id)\n",
        "\n",
        "\n",
        "def train(\n",
        "    config_path: Path | str, model_path: Path | str, reset_optimizer: bool = False\n",
        "):\n",
        "    config_path = Path(config_path)\n",
        "    model_path = Path(model_path)\n",
        "\n",
        "    hparams = utils.get_backup_hparams(config_path, model_path)\n",
        "    utils.ensure_pretrained_model(model_path, hparams.model.get(\"type_\", \"hifi-gan\"))\n",
        "\n",
        "    datamodule = VCDataModule(hparams)\n",
        "    strategy = (\n",
        "        (\n",
        "            \"ddp_find_unused_parameters_true\"\n",
        "            if os.name != \"nt\"\n",
        "            else DDPStrategy(find_unused_parameters=True, process_group_backend=\"gloo\")\n",
        "        )\n",
        "        if torch.cuda.device_count() > 1\n",
        "        else \"auto\"\n",
        "    )\n",
        "    LOG.info(f\"Using strategy: {strategy}\")\n",
        "    \n",
        "    callbacks = []\n",
        "    if hparams.train.push_to_hub:\n",
        "        callbacks.append(HuggingFacePushCallback(hparams.train.repo_id, hparams.train.private))\n",
        "    if not is_notebook():\n",
        "        callbacks.append(pl.callbacks.RichProgressBar())\n",
        "    if callbacks == []:\n",
        "        callbacks = None\n",
        "\n",
        "    trainer = pl.Trainer(\n",
        "        logger=TensorBoardLogger(\n",
        "            model_path, \"lightning_logs\", hparams.train.get(\"log_version\", 0)\n",
        "        ),\n",
        "        # profiler=\"simple\",\n",
        "        val_check_interval=hparams.train.eval_interval,\n",
        "        max_epochs=hparams.train.epochs,\n",
        "        check_val_every_n_epoch=None,\n",
        "        precision=\"16-mixed\"\n",
        "        if hparams.train.fp16_run\n",
        "        else \"bf16-mixed\"\n",
        "        if hparams.train.get(\"bf16_run\", False)\n",
        "        else 32,\n",
        "        strategy=strategy,\n",
        "        callbacks=callbacks,\n",
        "        benchmark=True,\n",
        "        enable_checkpointing=False,\n",
        "    )\n",
        "    tuner = Tuner(trainer)\n",
        "    model = VitsLightning(reset_optimizer=reset_optimizer, **hparams)\n",
        "\n",
        "    # automatic batch size scaling\n",
        "    batch_size = hparams.train.batch_size\n",
        "    batch_split = str(batch_size).split(\"-\")\n",
        "    batch_size = batch_split[0]\n",
        "    init_val = 2 if len(batch_split) <= 1 else int(batch_split[1])\n",
        "    max_trials = 25 if len(batch_split) <= 2 else int(batch_split[2])\n",
        "    if batch_size == \"auto\":\n",
        "        batch_size = \"binsearch\"\n",
        "    if batch_size in [\"power\", \"binsearch\"]:\n",
        "        model.tuning = True\n",
        "        tuner.scale_batch_size(\n",
        "            model,\n",
        "            mode=batch_size,\n",
        "            datamodule=datamodule,\n",
        "            steps_per_trial=1,\n",
        "            init_val=init_val,\n",
        "            max_trials=max_trials,\n",
        "        )\n",
        "        model.tuning = False\n",
        "    else:\n",
        "        batch_size = int(batch_size)\n",
        "    # automatic learning rate scaling is not supported for multiple optimizers\n",
        "    \"\"\"if hparams.train.learning_rate  == \"auto\":\n",
        "    lr_finder = tuner.lr_find(model)\n",
        "    LOG.info(lr_finder.results)\n",
        "    fig = lr_finder.plot(suggest=True)\n",
        "    fig.savefig(model_path / \"lr_finder.png\")\"\"\"\n",
        "\n",
        "    trainer.fit(model, datamodule=datamodule)\n",
        "\n",
        "if __name__ == '__main__':\n",
        "    train('configs/44k/config.json', 'logs/44k')"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Train Cluster Model"
      ],
      "metadata": {
        "id": "b2vNCDrSR8Xo"
      }
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "DBBEx-6Y1sOy"
      },
      "outputs": [],
      "source": [
        "! svc train-cluster"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "y_qYMuNY1tlm"
      },
      "outputs": [],
      "source": [
        "from huggingface_hub import upload_file\n",
        "\n",
        "upload_file(path_or_fileobj=\"/content/logs/44k/kmeans.pt\", repo_id=MODEL_REPO_ID, path_in_repo=\"kmeans.pt\")"
      ]
    }
  ],
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "machine_shape": "hm",
      "provenance": [],
      "authorship_tag": "ABX9TyOQeFSvxop9rlCaglNlNoXI",
      "include_colab_link": true
    },
    "gpuClass": "premium",
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}