from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import Chroma from langchain.text_splitter import CharacterTextSplitter from langchain.chains.question_answering import load_qa_chain from langchain.llms import OpenAI import os import subprocess subprocess.run(["git", "clone", "https://github.com/TheMITTech/shakespeare"], check=True) from glob import glob files = glob("./shakespeare/**/*.html") import shutil import os os.mkdir('./data') destination_folder = './data/' for html_file in files: shutil.move(html_file, destination_folder + html_file.split("/")[-1]) from langchain.document_loaders import BSHTMLLoader, DirectoryLoader from bs4 import BeautifulSoup bshtml_dir_loader = DirectoryLoader('./data/', loader_cls=BSHTMLLoader) data = bshtml_dir_loader.load() from langchain.text_splitter import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter( chunk_size = 1000, chunk_overlap = 20, length_function = len, ) documents = text_splitter.split_documents(data) embeddings = OpenAIEmbeddings() from langchain.vectorstores import Chroma persist_directory = "vector_db" vectordb = Chroma.from_documents(documents=documents, embedding=embeddings, persist_directory=persist_directory) vectordb.persist() vectordb = None vectordb = Chroma(persist_directory=persist_directory, embedding_function=embeddings) from langchain.chat_models import ChatOpenAI llm = ChatOpenAI(temperature=0, model="gpt-4") doc_retriever = vectordb.as_retriever() chain = load_qa_chain(OpenAI(temperature=0), chain_type="stuff") from langchain.chains import RetrievalQA shakespeare_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=doc_retriever) from langchain.utilities import SerpAPIWrapper search = SerpAPIWrapper() from langchain.agents import initialize_agent, Tool from langchain.agents import AgentType from langchain.tools import BaseTool from langchain.llms import OpenAI from langchain import LLMMathChain, SerpAPIWrapper tools = [ Tool( name = "Shakespeare QA System", func=shakespeare_qa.run, description="useful for when you need to answer questions about Shakespeare's works. Input should be a fully formed question." ), Tool( name = "SERP API Search", func=search.run, description="useful for when you need to answer questions about ruff (a python linter). Input should be a fully formed question." ), ] from langchain.memory import ConversationBufferMemory, ReadOnlySharedMemory memory = ConversationBufferMemory(memory_key="chat_history") readonlymemory = ReadOnlySharedMemory(memory=memory) from langchain.agents import ZeroShotAgent, Tool, AgentExecutor prefix = """Have a conversation with a human, answering the following questions as best you can. You have access to the following tools:""" suffix = """Begin!" {chat_history} Question: {input} {agent_scratchpad}""" prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, input_variables=["input", "chat_history", "agent_scratchpad"] ) from langchain import OpenAI, LLMChain, PromptTemplate llm_chain = LLMChain(llm=llm, prompt=prompt) agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True) agent_chain = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory) def make_inference(query): return(agent_chain.run(input=query)) if __name__ == "__main__": # make a gradio interface import gradio as gr gr.Interface( make_inference, [ gr.inputs.Textbox(lines=2, label="Query"), ], gr.outputs.Textbox(label="Response"), title="🗣️QuestionMyDoc-OpenAI📄", description="🗣️QuestionMyDoc-OpenAI📄 is a tool that allows you to ask questions about a document. In this case - Shakespears.", ).launch()