File size: 14,298 Bytes
9be4956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
import sys
import os
sys.path.append(os.path.abspath(os.path.join(os.getcwd(), "..")))
from langchain.prompts import PromptTemplate
from agents.prompts import planner_agent_prompt, cot_planner_agent_prompt, react_planner_agent_prompt,reflect_prompt,react_reflect_planner_agent_prompt, REFLECTION_HEADER
from langchain.chat_models import ChatOpenAI
from langchain.llms.base import BaseLLM
from langchain.schema import (
    AIMessage,
    HumanMessage,
    SystemMessage
)
from env import ReactEnv,ReactReflectEnv
import tiktoken
import re
import openai
import time
from enum import Enum
from typing import List, Union, Literal
from langchain_google_genai import ChatGoogleGenerativeAI


def catch_openai_api_error():
    error = sys.exc_info()[0]
    if error == openai.error.APIConnectionError:
        print("APIConnectionError")
    elif error == openai.error.RateLimitError:
        print("RateLimitError")
        time.sleep(60)
    elif error == openai.error.APIError:
        print("APIError")
    elif error == openai.error.AuthenticationError:
        print("AuthenticationError")
    else:
        print("API error:", error)


class ReflexionStrategy(Enum):
    """
    REFLEXION: Apply reflexion to the next reasoning trace 
    """
    REFLEXION = 'reflexion'


class Planner:
    def __init__(self,
                 # args,
                 agent_prompt: PromptTemplate = planner_agent_prompt,
                 model_name: str = 'gpt-3.5-turbo-1106',
                 ) -> None:

        self.agent_prompt = agent_prompt
        self.scratchpad: str = ''
        self.model_name = model_name
        self.enc = tiktoken.encoding_for_model("gpt-3.5-turbo")

        if model_name in  ['mistral-7B-32K']:
            self.llm = ChatOpenAI(temperature=0,
                     max_tokens=4096,
                     openai_api_key="EMPTY", 
                     openai_api_base="http://localhost:8301/v1", 
                     model_name="gpt-3.5-turbo")
        
        if model_name in  ['ChatGLM3-6B-32K']:
            self.llm = ChatOpenAI(temperature=0,
                     max_tokens=4096,
                     openai_api_key="EMPTY", 
                     openai_api_base="http://localhost:8501/v1", 
                     model_name="gpt-3.5-turbo")
            
        elif model_name in ['mixtral']:
            self.max_token_length = 30000
            self.llm = ChatOpenAI(temperature=0,
                     max_tokens=4096,
                     openai_api_key="EMPTY", 
                     openai_api_base="http://10.176.40.135:8000/v1", 
                     model_name="/home/huggingface_models/models--mistralai--Mixtral-8x7B-Instruct-v0.1/snapshots/e0bbb53cee412aba95f3b3fa4fc0265b1a0788b2")
            
        elif model_name in ['gemini']:
            self.llm = ChatGoogleGenerativeAI(temperature=0,model="gemini-pro",google_api_key='AIzaSyDarE2hG-cCeE6-GzNcEHflQa4kjY0QCK0')
        else:
            self.llm = ChatOpenAI(model_name=model_name, temperature=0, max_tokens=4096, openai_api_key='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')


        print(f"PlannerAgent {model_name} loaded.")

    def run(self, text, query, log_file=None) -> str:
        if log_file:
            log_file.write('\n---------------Planner\n'+self._build_agent_prompt(text, query))
        # print(self._build_agent_prompt(text, query))
        if self.model_name in ['gemini']:
            return str(self.llm.invoke(self._build_agent_prompt(text, query)).content)
        else:
            if len(self.enc.encode(self._build_agent_prompt(text, query))) > 12000:
                return 'Max Token Length Exceeded.'
            else:
                return self.llm([HumanMessage(content=self._build_agent_prompt(text, query))]).content

    def _build_agent_prompt(self, text, query) -> str:
        return self.agent_prompt.format(
            text=text,
            query=query)


class ReactPlanner:
    """
    A question answering ReAct Agent.
    """
    def __init__(self,
                 agent_prompt: PromptTemplate = react_planner_agent_prompt,
                 model_name: str = 'gpt-3.5-turbo-1106',
                 ) -> None:
        
        self.agent_prompt = agent_prompt
        self.react_llm = ChatOpenAI(model_name=model_name, temperature=0, max_tokens=1024, openai_api_key='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',model_kwargs={"stop": ["Action","Thought","Observation"]})
        self.env = ReactEnv()
        self.query = None
        self.max_steps = 30
        self.reset()
        self.finished = False
        self.answer = ''
        self.enc = tiktoken.encoding_for_model("gpt-3.5-turbo")

    def run(self, text, query, reset = True) -> None:

        self.query = query
        self.text = text

        if reset:
            self.reset()
        

        while not (self.is_halted() or self.is_finished()):
            self.step()
        
        return self.answer, self.scratchpad

    
    def step(self) -> None:
        # Think
        self.scratchpad += f'\nThought {self.curr_step}:'
        self.scratchpad += ' ' + self.prompt_agent()
        print(self.scratchpad.split('\n')[-1])

        # Act
        self.scratchpad += f'\nAction {self.curr_step}:'
        action = self.prompt_agent()
        self.scratchpad += ' ' + action
        print(self.scratchpad.split('\n')[-1])

        # Observe
        self.scratchpad += f'\nObservation {self.curr_step}: '

        action_type, action_arg = parse_action(action)

        if action_type == 'CostEnquiry':
            try:
                input_arg = eval(action_arg)
                if type(input_arg) != dict:
                    raise ValueError('The sub plan can not be parsed into json format, please check. Only one day plan is supported.')
                observation = f'Cost: {self.env.run(input_arg)}'
            except SyntaxError:
                observation = f'The sub plan can not be parsed into json format, please check.'
            except ValueError as e:
                observation = str(e)
        
        elif action_type == 'Finish':
            self.finished = True
            observation = f'The plan is finished.'
            self.answer = action_arg
        
        else:
            observation = f'Action {action_type} is not supported.'
        
        self.curr_step += 1

        self.scratchpad += observation
        print(self.scratchpad.split('\n')[-1])

    def prompt_agent(self) -> str:
        while True:
            try:
                return format_step(self.react_llm([HumanMessage(content=self._build_agent_prompt())]).content)
            except:
                catch_openai_api_error()
                print(self._build_agent_prompt())
                print(len(self.enc.encode(self._build_agent_prompt())))
                time.sleep(5)
    
    def _build_agent_prompt(self) -> str:
        return self.agent_prompt.format(
                            query = self.query,
                            text = self.text,
                            scratchpad = self.scratchpad)
    
    def is_finished(self) -> bool:
        return self.finished

    def is_halted(self) -> bool:
        return ((self.curr_step > self.max_steps) or (
                    len(self.enc.encode(self._build_agent_prompt())) > 14000)) and not self.finished

    def reset(self) -> None:
        self.scratchpad = ''
        self.answer = ''
        self.curr_step = 1
        self.finished = False


class ReactReflectPlanner:
    """
    A question answering Self-Reflecting React Agent.
    """
    def __init__(self,
                 agent_prompt: PromptTemplate = react_reflect_planner_agent_prompt,
                reflect_prompt: PromptTemplate = reflect_prompt,
                 model_name: str = 'gpt-3.5-turbo-1106',
                 ) -> None:
        
        self.agent_prompt = agent_prompt
        self.reflect_prompt = reflect_prompt
        if model_name in ['gemini']:
            self.react_llm = ChatGoogleGenerativeAI(temperature=0,model="gemini-pro",google_api_key='AIzaSyDarE2hG-cCeE6-GzNcEHflQa4kjY0QCK0')
            self.reflect_llm = ChatGoogleGenerativeAI(temperature=0,model="gemini-pro",google_api_key='AIzaSyDarE2hG-cCeE6-GzNcEHflQa4kjY0QCK0')
        else:
            self.react_llm = ChatOpenAI(model_name=model_name, temperature=0, max_tokens=1024, openai_api_key='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',model_kwargs={"stop": ["Action","Thought","Observation"]})
            self.reflect_llm = ChatOpenAI(model_name=model_name, temperature=0, max_tokens=1024, openai_api_key='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',model_kwargs={"stop": ["Action","Thought","Observation"]})
        self.model_name = model_name
        self.env = ReactReflectEnv()
        self.query = None
        self.max_steps = 30
        self.reset()
        self.finished = False
        self.answer = ''
        self.reflections: List[str] = []
        self.reflections_str: str = ''
        self.enc = tiktoken.encoding_for_model("gpt-3.5-turbo")

    def run(self, text, query, reset = True) -> None:

        self.query = query
        self.text = text

        if reset:
            self.reset()
        

        while not (self.is_halted() or self.is_finished()):
            self.step()
            if self.env.is_terminated and not self.finished:
                self.reflect(ReflexionStrategy.REFLEXION)

        
        return self.answer, self.scratchpad

    
    def step(self) -> None:
        # Think
        self.scratchpad += f'\nThought {self.curr_step}:'
        self.scratchpad += ' ' + self.prompt_agent()
        print(self.scratchpad.split('\n')[-1])

        # Act
        self.scratchpad += f'\nAction {self.curr_step}:'
        action = self.prompt_agent()
        self.scratchpad += ' ' + action
        print(self.scratchpad.split('\n')[-1])

        # Observe
        self.scratchpad += f'\nObservation {self.curr_step}: '

        action_type, action_arg = parse_action(action)

        if action_type == 'CostEnquiry':
            try:
                input_arg = eval(action_arg)
                if type(input_arg) != dict:
                    raise ValueError('The sub plan can not be parsed into json format, please check. Only one day plan is supported.')
                observation = f'Cost: {self.env.run(input_arg)}'
            except SyntaxError:
                observation = f'The sub plan can not be parsed into json format, please check.'
            except ValueError as e:
                observation = str(e)
        
        elif action_type == 'Finish':
            self.finished = True
            observation = f'The plan is finished.'
            self.answer = action_arg
        
        else:
            observation = f'Action {action_type} is not supported.'
        
        self.curr_step += 1

        self.scratchpad += observation
        print(self.scratchpad.split('\n')[-1])

    def reflect(self, strategy: ReflexionStrategy) -> None:
        print('Reflecting...')
        if strategy == ReflexionStrategy.REFLEXION: 
            self.reflections += [self.prompt_reflection()]
            self.reflections_str = format_reflections(self.reflections)
        else:
            raise NotImplementedError(f'Unknown reflection strategy: {strategy}')
        print(self.reflections_str)

    def prompt_agent(self) -> str:
        while True:
            try:
                if self.model_name in ['gemini']:
                    return format_step(self.react_llm.invoke(self._build_agent_prompt()).content)
                else:
                    return format_step(self.react_llm([HumanMessage(content=self._build_agent_prompt())]).content)
            except:
                catch_openai_api_error()
                print(self._build_agent_prompt())
                print(len(self.enc.encode(self._build_agent_prompt())))
                time.sleep(5)
    
    def prompt_reflection(self) -> str:
        while True:
            try:
                if self.model_name in ['gemini']:
                    return format_step(self.reflect_llm.invoke(self._build_reflection_prompt()).content)
                else:
                    return format_step(self.reflect_llm([HumanMessage(content=self._build_reflection_prompt())]).content)
            except:
                catch_openai_api_error()
                print(self._build_reflection_prompt())
                print(len(self.enc.encode(self._build_reflection_prompt())))
                time.sleep(5)
    
    def _build_agent_prompt(self) -> str:
        return self.agent_prompt.format(
                            query = self.query,
                            text = self.text,
                            scratchpad = self.scratchpad,
                            reflections = self.reflections_str)
    
    def _build_reflection_prompt(self) -> str:
        return self.reflect_prompt.format(
                            query = self.query,
                            text = self.text,
                            scratchpad = self.scratchpad)
    
    def is_finished(self) -> bool:
        return self.finished

    def is_halted(self) -> bool:
        return ((self.curr_step > self.max_steps) or (
                    len(self.enc.encode(self._build_agent_prompt())) > 14000)) and not self.finished

    def reset(self) -> None:
        self.scratchpad = ''
        self.answer = ''
        self.curr_step = 1
        self.finished = False
        self.reflections = []
        self.reflections_str = ''
        self.env.reset()

def format_step(step: str) -> str:
    return step.strip('\n').strip().replace('\n', '')

def parse_action(string):
    pattern = r'^(\w+)\[(.+)\]$'
    match = re.match(pattern, string)

    try:
        if match:
            action_type = match.group(1)
            action_arg = match.group(2)
            return action_type, action_arg
        else:
            return None, None
        
    except:
        return None, None

def format_reflections(reflections: List[str],
                        header: str = REFLECTION_HEADER) -> str:
    if reflections == []:
        return ''
    else:
        return header + 'Reflections:\n- ' + '\n- '.join([r.strip() for r in reflections])

# if __name__ == '__main__':