File size: 9,519 Bytes
9be4956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import json
import os
import re
import sys
from tools.flights.apis import Flights
from tools.accommodations.apis import Accommodations
from tools.restaurants.apis import Restaurants
from tools.googleDistanceMatrix.apis import GoogleDistanceMatrix
from tools.googlePlaces.apis import GooglePlaces
from tools.attractions.apis import Attractions
from annotation.src.utils import get_valid_name_city,extract_before_parenthesis
from tqdm import tqdm

sys.path.append(os.path.abspath(os.path.join(os.getcwd(), "..")))
os.chdir(os.path.dirname(os.path.abspath(__file__)))


flight = Flights()
accommodations = Accommodations()
restaurants = Restaurants()
googleDistanceMatrix = GoogleDistanceMatrix()
googlePlaces = GooglePlaces()
attractions = Attractions()


def load_line_json_data(filename):
    data = []
    with open(filename, 'r', encoding='utf-8') as f:
        for line in f.read().strip().split('\n'):
            unit = json.loads(line)
            data.append(unit)
    return data

def extract_numbers_from_filenames(directory):
    # Define the pattern to match files
    pattern = r'annotation_(\d+).json'

    # List all files in the directory
    files = os.listdir(directory)

    # Extract numbers from filenames that match the pattern
    numbers = [int(re.search(pattern, file).group(1)) for file in files if re.match(pattern, file)]

    return numbers

def extract_from_to(text: str):
    """
    Extracts 'A' and 'B' from the format "from A to B" in the given text, with B ending at a comma or the end of the string.
    
    Args:
    - text (str): The input string.
    
    Returns:
    - tuple: A tuple containing 'A' and 'B'. If no match is found, returns (None, None).
    """
    pattern = r"from\s+(.+?)\s+to\s+([^,]+)(?=[,\s]|$)"
    matches = re.search(pattern, text)
    return matches.groups() if matches else (None, None)

def extract_city_list(query_data, annotated_data):
    city_list = []
    for unit in annotated_data[:query_data['days']]:
        if 'from' in unit['current_city']:
            from_city, to_city = extract_from_to(unit['current_city'])
            from_city = extract_before_parenthesis(from_city)
            to_city = extract_before_parenthesis(to_city)
            if from_city not in city_list:
                city_list.append(from_city)
            if to_city not in city_list:
                city_list.append(to_city)
        else:
            city = extract_before_parenthesis(unit['current_city'])
            if city not in city_list:
                city_list.append(city)

    return city_list


# if __name__ == '__main__':
#     user_name = 'all'
#     directory = '../data/annotation/{}'.format(user_name)
#     query_data_list = load_line_json_data('../data/query/{}.jsonl'.format(user_name))
#     numbers = extract_numbers_from_filenames(directory)
#     print(numbers)
#     for number in tqdm(numbers):
#         json_data = json.load(open(os.path.join(directory, 'annotation_{}.json'.format(number))))
#         query_data = query_data_list[number-1]
#         city_list = extract_city_list(query_data,json_data)
#         human_collected_info = []

#         for city in city_list[1:]:
#             attractions_data = attractions.run(city)
#             if type(attractions_data) != str:
#                 attractions_data.drop(['Latitude','Longitude','Address','Phone','Website','City'],axis=1,inplace=True)
#             if type(attractions_data) != str:
#                 attractions_data = attractions_data.to_string(index=False)
#             restaurants_data = restaurants.run(city)
#             restaurants_data.drop(['City'],axis=1,inplace=True)
#             if type(restaurants_data) != str:
#                 restaurants_data = restaurants_data.to_string(index=False)
#             accommodations_data = accommodations.run(city)
#             accommodations_data.drop(['city'],axis=1,inplace=True)
#             if type(accommodations_data) != str:
#                 accommodations_data = accommodations_data.to_string(index=False)
#             human_collected_info.append({"Description":"Attractions in {}".format(city),"Content":attractions_data})
#             human_collected_info.append({"Description":"Restaurants in {}".format(city),"Content":restaurants_data})
#             human_collected_info.append({"Description":"Accommodations in {}".format(city),"Content":accommodations_data})

        
#         for idx, unit in enumerate(json_data):
#             if unit != {}:
#                 if 'from' in unit['current_city']:
#                     from_city, to_city = extract_from_to(unit['current_city'])
#                     from_city = extract_before_parenthesis(from_city)
#                     to_city = extract_before_parenthesis(to_city)
#                     date = query_data_list[number-1]['date'][idx]
#                     flight_data = flight.run(from_city, to_city, date)
#                     if type(flight_data) != str:
#                         flight_data.drop(['OriginCityName','DestCityName','Distance','FlightDate'],axis=1,inplace=True)
#                         flight_data = flight_data.to_string(index=False)
#                     human_collected_info.append({"Description":"Flight from {} to {} on {}".format(from_city, to_city, date), "Content":flight_data})
#                     self_driving_data = googleDistanceMatrix.run(from_city, to_city,mode="self-driving")
#                     human_collected_info.append({"Description":"Self-driving from {} to {}".format(from_city, to_city), "Content":self_driving_data})
#                     taxi_data = googleDistanceMatrix.run(from_city, to_city, mode='taxi')
#                     human_collected_info.append({"Description":"Taxi from {} to {}".format(from_city, to_city), "Content":taxi_data})
        
#         # write to json file
#         with open(os.path.join(directory, 'human_collected_info_{}.json'.format(number)), 'w', encoding='utf-8') as f:
#             json.dump(human_collected_info, f, indent=4, ensure_ascii=False)
#         # break


if __name__ == '__main__':
    set_type = ['train','dev','test'][2]
    directory = '/home/xj/toolAugEnv/code/toolConstraint/data/final_data/{}'.format(set_type)
    query_data_list = load_line_json_data('/home/xj/toolAugEnv/code/toolConstraint/data/final_data/{}/query/query.jsonl'.format(set_type))
    numbers = [i for i in range(1,len(query_data_list)+1)]
    for number in tqdm(numbers):
        json_data = json.load(open(os.path.join(directory, 'plan/plan_{}.json'.format(number))))[1]
        query_data = query_data_list[number-1]
        city_list = extract_city_list(query_data,json_data)
        human_collected_info = []

        for city in city_list[1:]:
            attractions_data = attractions.run(city)
            # if type(attractions_data) != str:
            #     attractions_data.drop(['Latitude','Longitude','Address','Phone','Website','City'],axis=1,inplace=True)
            if type(attractions_data) != str:
                attractions_data = attractions_data.to_string(index=False)
            restaurants_data = restaurants.run(city)
            # restaurants_data.drop(['City'],axis=1,inplace=True)
            if type(restaurants_data) != str:
                restaurants_data = restaurants_data.to_string(index=False)
            accommodations_data = accommodations.run(city)
            # accommodations_data.drop(['city'],axis=1,inplace=True)
            if type(accommodations_data) != str:
                accommodations_data = accommodations_data.to_string(index=False)
            human_collected_info.append({"Description":"Attractions in {}".format(city),"Content":attractions_data})
            human_collected_info.append({"Description":"Restaurants in {}".format(city),"Content":restaurants_data})
            human_collected_info.append({"Description":"Accommodations in {}".format(city),"Content":accommodations_data})

        
        for idx, unit in enumerate(json_data):
            if unit != {}:
                if 'from' in unit['current_city']:
                    from_city, to_city = extract_from_to(unit['current_city'])
                    from_city = extract_before_parenthesis(from_city)
                    to_city = extract_before_parenthesis(to_city)
                    date = query_data_list[number-1]['date'][idx]
                    flight_data = flight.run(from_city, to_city, date)
                    if type(flight_data) != str:
                        # flight_data.drop(['OriginCityName','DestCityName','Distance','FlightDate'],axis=1,inplace=True)
                        flight_data = flight_data.to_string(index=False)
                    human_collected_info.append({"Description":"Flight from {} to {} on {}".format(from_city, to_city, date), "Content":flight_data})
                    self_driving_data = googleDistanceMatrix.run(from_city, to_city,mode="self-driving")
                    human_collected_info.append({"Description":"Self-driving from {} to {}".format(from_city, to_city), "Content":self_driving_data})
                    taxi_data = googleDistanceMatrix.run(from_city, to_city, mode='taxi')
                    human_collected_info.append({"Description":"Taxi from {} to {}".format(from_city, to_city), "Content":taxi_data})
        
        # write to json file
        with open(os.path.join(directory, 'plan/human_collected_info_{}.json'.format(number)), 'w', encoding='utf-8') as f:
            json.dump(human_collected_info, f, indent=4, ensure_ascii=False)
        # break