Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from datasets import load_dataset
|
6 |
+
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
+
|
8 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
9 |
+
|
10 |
+
|
11 |
+
# load speech translation checkpoint
|
12 |
+
asr_pipe = pipeline("automatic-speech-recognition", model="oyemade/w2v-bert-2.0-yoruba-colab-CV16.1", device=device)
|
13 |
+
|
14 |
+
|
15 |
+
# load text-to-speech checkpoint and speaker embeddings
|
16 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
17 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
18 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
+
|
20 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
+
|
23 |
+
|
24 |
+
translation_model = pipeline("translation", "facebook/nllb-200-distilled-600M", src_lang="yor_Latn", tgt_lang="eng_Latn", device=device)
|
25 |
+
|
26 |
+
|
27 |
+
def translate(audio):
|
28 |
+
text = asr_pipe(audio)["text"]
|
29 |
+
# print(text)
|
30 |
+
translation = translation_model(text)
|
31 |
+
# print(translation[0]['translation_text'])
|
32 |
+
return translation[0]['translation_text']
|
33 |
+
|
34 |
+
def synthesise(text):
|
35 |
+
inputs = processor(text=text, return_tensors="pt")
|
36 |
+
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
37 |
+
return speech.cpu()
|
38 |
+
|
39 |
+
def speech_to_speech_translation(audio):
|
40 |
+
# print(model)
|
41 |
+
translated_text = translate(model, audio)
|
42 |
+
synthesised_speech = synthesise(translated_text)
|
43 |
+
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
44 |
+
return 16000, synthesised_speech
|
45 |
+
|
46 |
+
iface = gr.Interface(
|
47 |
+
speech_to_speech_translation,
|
48 |
+
gr.Audio(sources="microphone", type="filepath"),
|
49 |
+
gr.Audio(label="Generated Speech", type="numpy"),
|
50 |
+
title="Neoform AI: Yoruba Speech to English Speech",
|
51 |
+
description="Demo for Yoruba speech translated to English Speech. NOTE: If you get an ERROR after pressing submit, give the audio some secs to load then try again.",
|
52 |
+
)
|
53 |
+
|
54 |
+
iface.launch()
|