File size: 4,319 Bytes
44a2337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
from PIL import Image

import numpy as np
import torch

from transformers import (
    AutoImageProcessor,
)

import gradio as gr

from modeling_siglip import SiglipForImageClassification


HF_TOKEN = os.environ.get("HF_READ_TOKEN")

EXAMPLES = [["./images/sample.jpg"], ["./images/sample2.webp"]]

model_maps: dict[str, dict] = {
    "test2": {
        "repo": "p1atdev/siglip-tagger-test-2",
    },
    "test3": {
        "repo": "p1atdev/siglip-tagger-test-3",
    },
    # "test4": {
    #     "repo": "p1atdev/siglip-tagger-test-4",
    # },
}

for key in model_maps.keys():
    model_maps[key]["model"] = SiglipForImageClassification.from_pretrained(
        model_maps[key]["repo"], torch_dtype=torch.bfloat16, token=HF_TOKEN
    )
    model_maps[key]["processor"] = AutoImageProcessor.from_pretrained(
        model_maps[key]["repo"], token=HF_TOKEN
    )

README_MD = (
    f"""\

## SigLIP Tagger Test 3

An experimental model for tagging danbooru tags of images using SigLIP.



Model(s):

"""
    + "\n".join(
        f"- [{value['repo']}](https://huggingface.co/{value['repo']})"
        for value in model_maps.values()
    )
    + "\n"
    + """

Example images by NovelAI and niji・journey.

"""
)


def compose_text(results: dict[str, float], threshold: float = 0.3):
    return ", ".join(
        [
            key
            for key, value in sorted(results.items(), key=lambda x: x[1], reverse=True)
            if value > threshold
        ]
    )


@torch.no_grad()
def predict_tags(image: Image.Image, model_name: str, threshold: float):
    if image is None:
        return None, None

    inputs = model_maps[model_name]["processor"](image, return_tensors="pt")

    logits = (
        model_maps[model_name]["model"](
            **inputs.to(
                model_maps[model_name]["model"].device,
                model_maps[model_name]["model"].dtype,
            )
        )
        .logits.detach()
        .cpu()
        .float()
    )

    logits = np.clip(logits, 0.0, 1.0)

    results = {}

    for prediction in logits:
        for i, prob in enumerate(prediction):
            if prob.item() > 0:
                results[model_maps[model_name]["model"].config.id2label[i]] = (
                    prob.item()
                )

    return compose_text(results, threshold), results


css = """\

.sticky {

  position: sticky;

  top: 16px;

}



.gradio-container {

  overflow: clip;

}

"""


def demo():
    with gr.Blocks(css=css) as ui:
        gr.Markdown(README_MD)

        with gr.Row():
            with gr.Column():
                with gr.Row(elem_classes="sticky"):
                    with gr.Column():
                        input_img = gr.Image(
                            label="Input image", type="pil", height=480
                        )

                        with gr.Group():
                            model_name_radio = gr.Radio(
                                label="Model",
                                choices=list(model_maps.keys()),
                                value="test3",
                            )
                            tag_threshold_slider = gr.Slider(
                                label="Tags threshold",
                                minimum=0.0,
                                maximum=1.0,
                                value=0.3,
                                step=0.01,
                            )

                        start_btn = gr.Button(value="Start", variant="primary")

                        gr.Examples(
                            examples=EXAMPLES,
                            inputs=[input_img],
                            cache_examples=False,
                        )

            with gr.Column():
                output_tags = gr.Text(label="Output text", interactive=False)
                output_label = gr.Label(label="Output tags")

        start_btn.click(
            fn=predict_tags,
            inputs=[input_img, model_name_radio, tag_threshold_slider],
            outputs=[output_tags, output_label],
        )

    ui.launch(
        debug=True,
        # share=True
    )


if __name__ == "__main__":
    demo()