File size: 5,216 Bytes
e47ff0d
f8868b5
 
 
e47ff0d
f8868b5
e47ff0d
f8868b5
 
e47ff0d
 
 
 
 
 
 
f8868b5
 
e47ff0d
 
 
 
 
 
 
 
 
f8868b5
e47ff0d
 
 
 
 
 
 
 
f8868b5
e47ff0d
 
f8868b5
 
 
 
e47ff0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8868b5
e47ff0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8868b5
 
e47ff0d
f8868b5
e47ff0d
 
 
 
f8868b5
e47ff0d
 
 
 
 
 
 
 
 
 
 
 
 
f8868b5
 
 
 
 
 
 
 
 
e47ff0d
f8868b5
e47ff0d
f8868b5
e47ff0d
 
f8868b5
 
e47ff0d
 
 
f8868b5
 
 
 
 
 
e47ff0d
f8868b5
e47ff0d
f8868b5
 
 
 
 
 
 
e47ff0d
f8868b5
e47ff0d
f8868b5
 
 
 
 
 
e47ff0d
f8868b5
e47ff0d
f8868b5
 
 
 
 
e47ff0d
f8868b5
e47ff0d
f8868b5
 
 
e47ff0d
f8868b5
e47ff0d
 
f8868b5
e47ff0d
f8868b5
 
 
 
 
e47ff0d
f8868b5
e47ff0d
f8868b5
e47ff0d
 
 
 
 
 
 
 
 
 
 
 
f8868b5
 
e47ff0d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import gradio as gr
import numpy as np
import random
import spaces
from diffusers import DiffusionPipeline
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

try:
    from dotenv import load_dotenv

    load_dotenv()
except:
    print("failed to import dotenv (this is not a problem on the production)")

device = "cuda" if torch.cuda.is_available() else "cpu"

HF_TOKEN = os.environ.get("HF_TOKEN")
assert HF_TOKEN is not None

IMAGE_MODEL_REPO_ID = os.environ.get(
    "IMAGE_MODEL_REPO_ID", "OnomaAIResearch/Illustrious-xl-early-release-v0"
)
DART_V3_REPO_ID = os.environ.get("DART_V3_REPO_ID", "p1atdev/dart-v3-llama-8L-241003")

torch_dtype = torch.bfloat16

dart = AutoModelForCausalLM.from_pretrained(
    DART_V3_REPO_ID,
    torch_dtype=torch_dtype,
    token=HF_TOKEN,
)
tokenizer = AutoTokenizer.from_pretrained(DART_V3_REPO_ID)

pipe = DiffusionPipeline.from_pretrained(IMAGE_MODEL_REPO_ID, torch_dtype=torch_dtype)
pipe = pipe.to(device)
pipe = torch.compile(pipe)


MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

TEMPLATE = (
    "<|bos|>"
    #
    "<|rating:general|>"
    "{aspect_ratio}"
    "<|length:medium|>"
    #
    "<copyright>original</copyright>"
    #
    "<character></character>"
    #
    "<general>"
)


@torch.inference_mode
def generate_prompt(aspect_ratio: str):
    input_ids = tokenizer.encode_plus(
        TEMPLATE.format(aspect_ratio=aspect_ratio)
    ).input_ids

    output_ids = dart.generate(
        input_ids,
        max_new_tokens=256,
        temperature=1.0,
        top_p=1.0,
        top_k=100,
        num_beams=1,
    )[0]

    generated = output_ids[len(input_ids) :]
    decoded = ", ".join(tokenizer.batch_decode(generated))

    return decoded


@spaces.GPU  # [uncomment to use ZeroGPU]
def infer(
    negative_prompt: str,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    prompt = generate_prompt("<|aspect_ratio:square|>")
    print(prompt)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, prompt, seed


css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Random IllustriousXL
        """)

        with gr.Row():
            run_button = gr.Button("Generate random", scale=0)

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Generation details", open=False):
            prompt_txt = gr.Textbox("Generated prompt", interactive=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
                value=" worst quality, comic, multiple views, bad quality, low quality, lowres, displeasing, very displeasing, bad anatomy, bad hands, scan artifacts, monochrome, greyscale, signature, twitter username, jpeg artifacts, 2koma, 4koma, guro, extra digits, fewer digits",
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,  # Replace with defaults that work for your model
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=1.0,
                    maximum=10.0,
                    step=0.5,
                    value=6.5,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=20,
                )

    gr.on(
        triggers=[run_button.click],
        fn=infer,
        inputs=[
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, prompt_txt, seed],
    )

demo.queue().launch()