Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import os | |
import random | |
import math | |
import torch | |
import numpy as np | |
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import ( | |
StableDiffusionXLPipeline, | |
) | |
from diffusers.schedulers.scheduling_euler_ancestral_discrete import ( | |
EulerAncestralDiscreteScheduler, | |
) | |
from diffusers.models.attention_processor import AttnProcessor2_0 | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import gradio as gr | |
try: | |
from dotenv import load_dotenv | |
load_dotenv() | |
except: | |
print("failed to import dotenv (this is not a problem on the production)") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
assert HF_TOKEN is not None | |
IMAGE_MODEL_REPO_ID = os.environ.get( | |
"IMAGE_MODEL_REPO_ID", "OnomaAIResearch/Illustrious-xl-early-release-v0" | |
) | |
DART_V3_REPO_ID = os.environ.get("DART_V3_REPO_ID", None) | |
assert DART_V3_REPO_ID is not None | |
dart = AutoModelForCausalLM.from_pretrained( | |
DART_V3_REPO_ID, | |
torch_dtype=torch.bfloat16, | |
token=HF_TOKEN, | |
use_cache=True, | |
device_map="cpu", | |
) | |
dart = dart.eval() | |
dart = dart.requires_grad_(False) | |
dart = torch.compile(dart) | |
tokenizer = AutoTokenizer.from_pretrained(DART_V3_REPO_ID) | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
IMAGE_MODEL_REPO_ID, | |
torch_dtype=torch.bfloat16, | |
add_watermarker=False, | |
custom_pipeline="lpw_stable_diffusion_xl", | |
) | |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
pipe.unet.set_attn_processor(AttnProcessor2_0()) | |
if device == "cuda": | |
pipe.enable_sequential_cpu_offload(gpu_id=0, device="cuda") | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
TEMPLATE = ( | |
"<|bos|>" | |
# | |
"<|rating:general|>" | |
"{aspect_ratio}" | |
"<|length:medium|>" | |
# | |
"<copyright></copyright>" | |
# | |
"<character></character>" | |
# | |
"<general>{subject}" | |
) | |
QUALITY_TAGS = "masterpiece, best quality, very aesthetic, newest" | |
NEGATIVE_PROMPT = "nsfw, (worst quality, bad quality:1.2), very displeasing, lowres, jaggy lines, 3d, watermark, signature, copyright, logo, blurry, ugly, poorly drawn, retro, scan, white outline" | |
def get_aspect_ratio(width: int, height: int) -> str: | |
ar = width / height | |
if ar <= 1 / math.sqrt(3): | |
return "<|aspect_ratio:ultra_tall|>" | |
elif ar <= 8 / 9: | |
return "<|aspect_ratio:tall|>" | |
elif ar < 9 / 8: | |
return "<|aspect_ratio:square|>" | |
elif ar < math.sqrt(3): | |
return "<|aspect_ratio:wide|>" | |
else: | |
return "<|aspect_ratio:ultra_wide|>" | |
def generate_prompt(subject: str, aspect_ratio: str): | |
input_ids = tokenizer.encode_plus( | |
TEMPLATE.format(aspect_ratio=aspect_ratio, subject=subject), | |
return_tensors="pt", | |
).input_ids | |
print("input_ids:", input_ids) | |
output_ids = dart.generate( | |
input_ids, | |
max_new_tokens=256, | |
do_sample=True, | |
temperature=1.0, | |
top_p=1.0, | |
top_k=100, | |
num_beams=1, | |
)[0] | |
generated = output_ids[len(input_ids) :] | |
decoded = ", ".join( | |
[ | |
token | |
for token in tokenizer.batch_decode(generated, skip_special_tokens=True) | |
if token.strip() != "" | |
] | |
) | |
print("decoded:", decoded) | |
return decoded | |
def format_prompt(prompt: str, prompt_suffix: str): | |
return f"{prompt}, {prompt_suffix}" | |
def generate_image( | |
prompt: str, | |
negative_prompt: str, | |
generator, | |
width: int, | |
height: int, | |
guidance_scale: float, | |
num_inference_steps: int, | |
): | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
).images[0] | |
return image | |
def on_generate( | |
subject: str, | |
suffix: str, | |
negative_prompt: str, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
ar = get_aspect_ratio(width, height) | |
print("ar:", ar) | |
prompt = generate_prompt(subject, ar) | |
prompt = format_prompt(prompt, suffix) | |
print(prompt) | |
image = generate_image( | |
prompt, | |
negative_prompt, | |
generator, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
) | |
return image, prompt, seed | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# Random IllustriousXL | |
""") | |
with gr.Row(): | |
subject_radio = gr.Dropdown( | |
label="Subject", | |
choices=["1girl", "2girls", "1boy", "no humans"], | |
value="1girl", | |
) | |
run_button = gr.Button("Generate random", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Generation details", open=False): | |
prompt_txt = gr.Textbox(label="Generated prompt", interactive=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
prompt_suffix = gr.Text( | |
label="Prompt suffix", | |
visible=True, | |
value=QUALITY_TAGS, | |
) | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
placeholder="Enter a negative prompt", | |
visible=True, | |
value=NEGATIVE_PROMPT, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=512, | |
maximum=MAX_IMAGE_SIZE, | |
step=64, | |
value=832, # Replace with defaults that work for your model | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=512, | |
maximum=MAX_IMAGE_SIZE, | |
step=64, | |
value=1152, # Replace with defaults that work for your model | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=1.0, | |
maximum=10.0, | |
step=0.5, | |
value=6.5, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=20, | |
maximum=50, | |
step=1, | |
value=25, | |
) | |
gr.on( | |
triggers=[run_button.click], | |
fn=on_generate, | |
inputs=[ | |
subject_radio, | |
prompt_suffix, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
], | |
outputs=[result, prompt_txt, seed], | |
) | |
demo.queue().launch() | |