Spaces:
Running
on
Zero
Running
on
Zero
fix: no pipe torch.compile
Browse files
app.py
CHANGED
@@ -31,12 +31,15 @@ dart = AutoModelForCausalLM.from_pretrained(
|
|
31 |
DART_V3_REPO_ID,
|
32 |
torch_dtype=torch_dtype,
|
33 |
token=HF_TOKEN,
|
|
|
34 |
)
|
|
|
|
|
|
|
35 |
tokenizer = AutoTokenizer.from_pretrained(DART_V3_REPO_ID)
|
36 |
|
37 |
pipe = DiffusionPipeline.from_pretrained(IMAGE_MODEL_REPO_ID, torch_dtype=torch_dtype)
|
38 |
pipe = pipe.to(device)
|
39 |
-
pipe = torch.compile(pipe)
|
40 |
|
41 |
|
42 |
MAX_SEED = np.iinfo(np.int32).max
|
@@ -60,12 +63,15 @@ TEMPLATE = (
|
|
60 |
@torch.inference_mode
|
61 |
def generate_prompt(aspect_ratio: str):
|
62 |
input_ids = tokenizer.encode_plus(
|
63 |
-
TEMPLATE.format(aspect_ratio=aspect_ratio)
|
|
|
64 |
).input_ids
|
|
|
65 |
|
66 |
output_ids = dart.generate(
|
67 |
input_ids,
|
68 |
max_new_tokens=256,
|
|
|
69 |
temperature=1.0,
|
70 |
top_p=1.0,
|
71 |
top_k=100,
|
@@ -73,13 +79,35 @@ def generate_prompt(aspect_ratio: str):
|
|
73 |
)[0]
|
74 |
|
75 |
generated = output_ids[len(input_ids) :]
|
76 |
-
decoded = ", ".join(tokenizer.batch_decode(generated))
|
|
|
77 |
|
78 |
return decoded
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
|
82 |
-
def infer(
|
83 |
negative_prompt: str,
|
84 |
seed,
|
85 |
randomize_seed,
|
@@ -87,25 +115,23 @@ def infer(
|
|
87 |
height,
|
88 |
guidance_scale,
|
89 |
num_inference_steps,
|
90 |
-
progress=gr.Progress(track_tqdm=True),
|
91 |
):
|
92 |
if randomize_seed:
|
93 |
seed = random.randint(0, MAX_SEED)
|
94 |
-
|
95 |
generator = torch.Generator().manual_seed(seed)
|
96 |
|
97 |
prompt = generate_prompt("<|aspect_ratio:square|>")
|
98 |
print(prompt)
|
99 |
|
100 |
-
image =
|
101 |
-
prompt
|
102 |
-
negative_prompt
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
)
|
109 |
|
110 |
return image, prompt, seed
|
111 |
|
@@ -186,7 +212,7 @@ with gr.Blocks(css=css) as demo:
|
|
186 |
|
187 |
gr.on(
|
188 |
triggers=[run_button.click],
|
189 |
-
fn=
|
190 |
inputs=[
|
191 |
negative_prompt,
|
192 |
seed,
|
|
|
31 |
DART_V3_REPO_ID,
|
32 |
torch_dtype=torch_dtype,
|
33 |
token=HF_TOKEN,
|
34 |
+
use_cache=True,
|
35 |
)
|
36 |
+
dart = dart.eval()
|
37 |
+
dart = dart.requires_grad_(False)
|
38 |
+
dart = torch.compile(dart)
|
39 |
tokenizer = AutoTokenizer.from_pretrained(DART_V3_REPO_ID)
|
40 |
|
41 |
pipe = DiffusionPipeline.from_pretrained(IMAGE_MODEL_REPO_ID, torch_dtype=torch_dtype)
|
42 |
pipe = pipe.to(device)
|
|
|
43 |
|
44 |
|
45 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
63 |
@torch.inference_mode
|
64 |
def generate_prompt(aspect_ratio: str):
|
65 |
input_ids = tokenizer.encode_plus(
|
66 |
+
TEMPLATE.format(aspect_ratio=aspect_ratio),
|
67 |
+
return_tensors="pt",
|
68 |
).input_ids
|
69 |
+
print("input_ids", input_ids)
|
70 |
|
71 |
output_ids = dart.generate(
|
72 |
input_ids,
|
73 |
max_new_tokens=256,
|
74 |
+
do_sample=True,
|
75 |
temperature=1.0,
|
76 |
top_p=1.0,
|
77 |
top_k=100,
|
|
|
79 |
)[0]
|
80 |
|
81 |
generated = output_ids[len(input_ids) :]
|
82 |
+
decoded = ", ".join([token for token in tokenizer.batch_decode(generated, skip_special_tokens=True) if token.strip() != ""])
|
83 |
+
print("decoded", decoded)
|
84 |
|
85 |
return decoded
|
86 |
|
87 |
+
@spaces.GPU
|
88 |
+
def generate_image(
|
89 |
+
prompt: str,
|
90 |
+
negative_prompt: str,
|
91 |
+
generator,
|
92 |
+
width: int,
|
93 |
+
height: int,
|
94 |
+
guidance_scale: float,
|
95 |
+
num_inference_steps: int,
|
96 |
+
progress=gr.Progress(track_tqdm=True),
|
97 |
+
):
|
98 |
+
image = pipe(
|
99 |
+
prompt=prompt,
|
100 |
+
negative_prompt=negative_prompt,
|
101 |
+
guidance_scale=guidance_scale,
|
102 |
+
num_inference_steps=num_inference_steps,
|
103 |
+
width=width,
|
104 |
+
height=height,
|
105 |
+
generator=generator,
|
106 |
+
).images[0]
|
107 |
+
|
108 |
+
return image
|
109 |
|
110 |
+
def on_generate(
|
|
|
111 |
negative_prompt: str,
|
112 |
seed,
|
113 |
randomize_seed,
|
|
|
115 |
height,
|
116 |
guidance_scale,
|
117 |
num_inference_steps,
|
|
|
118 |
):
|
119 |
if randomize_seed:
|
120 |
seed = random.randint(0, MAX_SEED)
|
|
|
121 |
generator = torch.Generator().manual_seed(seed)
|
122 |
|
123 |
prompt = generate_prompt("<|aspect_ratio:square|>")
|
124 |
print(prompt)
|
125 |
|
126 |
+
image = generate_image(
|
127 |
+
prompt,
|
128 |
+
negative_prompt,
|
129 |
+
generator,
|
130 |
+
width,
|
131 |
+
height,
|
132 |
+
guidance_scale,
|
133 |
+
num_inference_steps,
|
134 |
+
)
|
135 |
|
136 |
return image, prompt, seed
|
137 |
|
|
|
212 |
|
213 |
gr.on(
|
214 |
triggers=[run_button.click],
|
215 |
+
fn=on_generate,
|
216 |
inputs=[
|
217 |
negative_prompt,
|
218 |
seed,
|