import os import gradio as gr import numpy as np import random import spaces from diffusers import DiffusionPipeline from transformers import AutoModelForCausalLM, AutoTokenizer import torch try: from dotenv import load_dotenv load_dotenv() except: print("failed to import dotenv (this is not a problem on the production)") device = "cuda" if torch.cuda.is_available() else "cpu" HF_TOKEN = os.environ.get("HF_TOKEN") assert HF_TOKEN is not None IMAGE_MODEL_REPO_ID = os.environ.get( "IMAGE_MODEL_REPO_ID", "OnomaAIResearch/Illustrious-xl-early-release-v0" ) DART_V3_REPO_ID = os.environ.get("DART_V3_REPO_ID", None) assert DART_V3_REPO_ID is not None torch_dtype = torch.bfloat16 dart = AutoModelForCausalLM.from_pretrained( DART_V3_REPO_ID, torch_dtype=torch_dtype, token=HF_TOKEN, use_cache=True, ) dart = dart.eval() dart = dart.requires_grad_(False) dart = torch.compile(dart) tokenizer = AutoTokenizer.from_pretrained(DART_V3_REPO_ID) pipe = DiffusionPipeline.from_pretrained(IMAGE_MODEL_REPO_ID, torch_dtype=torch_dtype) pipe = pipe.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 TEMPLATE = ( "<|bos|>" # "<|rating:general|>" "{aspect_ratio}" "<|length:medium|>" # "original" # "" # "" ) @torch.inference_mode def generate_prompt(aspect_ratio: str): input_ids = tokenizer.encode_plus( TEMPLATE.format(aspect_ratio=aspect_ratio), return_tensors="pt", ).input_ids print("input_ids", input_ids) output_ids = dart.generate( input_ids, max_new_tokens=256, do_sample=True, temperature=1.0, top_p=1.0, top_k=100, num_beams=1, )[0] generated = output_ids[len(input_ids) :] decoded = ", ".join([token for token in tokenizer.batch_decode(generated, skip_special_tokens=True) if token.strip() != ""]) print("decoded", decoded) return decoded @spaces.GPU def generate_image( prompt: str, negative_prompt: str, generator, width: int, height: int, guidance_scale: float, num_inference_steps: int, progress=gr.Progress(track_tqdm=True), ): image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, ).images[0] return image def on_generate( negative_prompt: str, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) prompt = generate_prompt("<|aspect_ratio:square|>") print(prompt) image = generate_image( prompt, negative_prompt, generator, width, height, guidance_scale, num_inference_steps, ) return image, prompt, seed css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # Random IllustriousXL """) with gr.Row(): run_button = gr.Button("Generate random", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Generation details", open=False): prompt_txt = gr.Textbox("Generated prompt", interactive=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, value=" worst quality, comic, multiple views, bad quality, low quality, lowres, displeasing, very displeasing, bad anatomy, bad hands, scan artifacts, monochrome, greyscale, signature, twitter username, jpeg artifacts, 2koma, 4koma, guro, extra digits, fewer digits", ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, # Replace with defaults that work for your model ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, # Replace with defaults that work for your model ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=1.0, maximum=10.0, step=0.5, value=6.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=20, ) gr.on( triggers=[run_button.click], fn=on_generate, inputs=[ negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ], outputs=[result, prompt_txt, seed], ) demo.queue().launch()