import os
import gradio as gr
import numpy as np
import random
import spaces
from diffusers import DiffusionPipeline
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
try:
from dotenv import load_dotenv
load_dotenv()
except:
print("failed to import dotenv (this is not a problem on the production)")
device = "cuda" if torch.cuda.is_available() else "cpu"
HF_TOKEN = os.environ.get("HF_TOKEN")
assert HF_TOKEN is not None
IMAGE_MODEL_REPO_ID = os.environ.get(
"IMAGE_MODEL_REPO_ID", "OnomaAIResearch/Illustrious-xl-early-release-v0"
)
DART_V3_REPO_ID = os.environ.get("DART_V3_REPO_ID", None)
assert DART_V3_REPO_ID is not None
torch_dtype = torch.bfloat16
dart = AutoModelForCausalLM.from_pretrained(
DART_V3_REPO_ID,
torch_dtype=torch_dtype,
token=HF_TOKEN,
use_cache=True,
)
dart = dart.eval()
dart = dart.requires_grad_(False)
dart = torch.compile(dart)
tokenizer = AutoTokenizer.from_pretrained(DART_V3_REPO_ID)
pipe = DiffusionPipeline.from_pretrained(IMAGE_MODEL_REPO_ID, torch_dtype=torch_dtype)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
TEMPLATE = (
"<|bos|>"
#
"<|rating:general|>"
"{aspect_ratio}"
"<|length:medium|>"
#
"original"
#
""
#
""
)
@torch.inference_mode
def generate_prompt(aspect_ratio: str):
input_ids = tokenizer.encode_plus(
TEMPLATE.format(aspect_ratio=aspect_ratio),
return_tensors="pt",
).input_ids
print("input_ids", input_ids)
output_ids = dart.generate(
input_ids,
max_new_tokens=256,
do_sample=True,
temperature=1.0,
top_p=1.0,
top_k=100,
num_beams=1,
)[0]
generated = output_ids[len(input_ids) :]
decoded = ", ".join([token for token in tokenizer.batch_decode(generated, skip_special_tokens=True) if token.strip() != ""])
print("decoded", decoded)
return decoded
@spaces.GPU
def generate_image(
prompt: str,
negative_prompt: str,
generator,
width: int,
height: int,
guidance_scale: float,
num_inference_steps: int,
progress=gr.Progress(track_tqdm=True),
):
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image
def on_generate(
negative_prompt: str,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
prompt = generate_prompt("<|aspect_ratio:square|>")
print(prompt)
image = generate_image(
prompt,
negative_prompt,
generator,
width,
height,
guidance_scale,
num_inference_steps,
)
return image, prompt, seed
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Random IllustriousXL
""")
with gr.Row():
run_button = gr.Button("Generate random", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Generation details", open=False):
prompt_txt = gr.Textbox("Generated prompt", interactive=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
value=" worst quality, comic, multiple views, bad quality, low quality, lowres, displeasing, very displeasing, bad anatomy, bad hands, scan artifacts, monochrome, greyscale, signature, twitter username, jpeg artifacts, 2koma, 4koma, guro, extra digits, fewer digits",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024, # Replace with defaults that work for your model
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1.0,
maximum=10.0,
step=0.5,
value=6.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=20,
)
gr.on(
triggers=[run_button.click],
fn=on_generate,
inputs=[
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, prompt_txt, seed],
)
demo.queue().launch()