Spaces:
Running
on
Zero
Running
on
Zero
Added space
Browse files- app.py +101 -0
- inputs/alexandra-zelena-phskyemu_c4-unsplash.jpg +0 -0
- inputs/birmingham-museums-trust-q2OwlfXAYfo-unsplash.jpg +0 -0
- inputs/engin-akyurt-aXVro7lQyUM-unsplash.jpg +0 -0
- inputs/george-webster-p1VZ5IbT2Tg-unsplash.jpg +0 -0
- inputs/hannah-pemberton-3d82e5_ylGo-unsplash.jpg +0 -0
- inputs/mihaly-varga-AQFfdEY3X4Q-unsplash.jpg +0 -0
- inputs/r-n-tyfqOL1FAQc-unsplash.jpg +0 -0
- model/__init__.py +0 -0
- model/pipeline_pops.py +553 -0
- model/pops_utils.py +41 -0
- pops.py +223 -0
- requirements.txt +6 -0
- style.css +55 -0
app.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from pops import PopsPipelines
|
3 |
+
|
4 |
+
BLOCK_WIDTH = 250
|
5 |
+
BLOCK_HEIGHT = 270
|
6 |
+
FONT_SIZE = 3.5
|
7 |
+
|
8 |
+
pops_pipelines = PopsPipelines()
|
9 |
+
|
10 |
+
def run_equation_1(object_path, text, texture_path):
|
11 |
+
image = pops_pipelines.run_instruct_texture(object_path, text, texture_path)
|
12 |
+
return image
|
13 |
+
|
14 |
+
def run_equation_2(object_path, texture_path, scene_path):
|
15 |
+
image = pops_pipelines.run_texture_scene(object_path, texture_path, scene_path)
|
16 |
+
return image
|
17 |
+
|
18 |
+
with gr.Blocks(css='style.css') as demo:
|
19 |
+
gr.HTML('''<h1>p<span class="o-pops">O</span>ps: Photo-Inspired Diffusion <span class="o-operators">O</span>perators</h1>''')
|
20 |
+
gr.HTML('<div style="text-align: center;"><h3><a href="https://popspaper.github.io/pOps/">https://popspaper.github.io/pOps/</a></h3></div>')
|
21 |
+
gr.HTML(
|
22 |
+
'<div style="text-align: center;">Our method learns operators that are applied directly in the image embedding space, resulting in a variety of semantic operations that can then be realized as images using an image diffusion model.</div>')
|
23 |
+
with gr.Row(equal_height=True,elem_classes='justified-element'):
|
24 |
+
with gr.Column(scale=0,min_width=BLOCK_WIDTH):
|
25 |
+
object_path_eq_1 = gr.Image(label="Upload object image", type="filepath",width=BLOCK_WIDTH,height=BLOCK_HEIGHT)
|
26 |
+
with gr.Column(scale=0,min_width=50):
|
27 |
+
gr.HTML(f'''<div style="justify-content: center; align-items: center;min-height:{BLOCK_HEIGHT}px"><span class="vertical-center" style="color:#82cf8e;font-size:{FONT_SIZE}rem;font-family:'Google Sans', sans-serif";>O</span></div>''')
|
28 |
+
with gr.Column(scale=0,min_width=200):
|
29 |
+
with gr.Group(elem_classes='instruct'):
|
30 |
+
text_eq_1 = gr.Textbox(value="",label="Enter adjective",max_lines=1,placeholder='e.g. melting, shiny, spiky',elem_classes='vertical-center')
|
31 |
+
with gr.Column(scale=0,min_width=50):
|
32 |
+
gr.HTML(f'''<div style="justify-content: center; align-items: center;min-height:{BLOCK_HEIGHT}px"><span class="vertical-center" style="color:#efa241;font-size:{FONT_SIZE}rem;font-family:'Google Sans', sans-serif";>O</span></div>''')
|
33 |
+
with gr.Column(scale=0,min_width=BLOCK_WIDTH):
|
34 |
+
texture_path_eq_1 = gr.Image(label="Upload texture image", type="filepath",width=BLOCK_WIDTH,height=BLOCK_HEIGHT)
|
35 |
+
with gr.Column(scale=0,min_width=50):
|
36 |
+
gr.HTML(f'''<div style="justify-content: center; align-items: center;min-height:{BLOCK_HEIGHT}px"><span class="vertical-center" style="color:#efa241;font-size:{FONT_SIZE}rem;font-family:'Google Sans', sans-serif";>=</span></div>''')
|
37 |
+
with gr.Column(scale=0,min_width=BLOCK_WIDTH):
|
38 |
+
output_eq_1 = gr.Image(label="Output",width=BLOCK_WIDTH,height=BLOCK_HEIGHT)
|
39 |
+
with gr.Row(equal_height=True, elem_classes='justified-element'):
|
40 |
+
run_button_eq_1 = gr.Button("Run Instruct and Texture Equation",elem_classes='small-elem')
|
41 |
+
run_button_eq_1.click(fn=run_equation_1,inputs=[object_path_eq_1, text_eq_1, texture_path_eq_1],outputs=[output_eq_1])
|
42 |
+
with gr.Row(equal_height=True, elem_classes='justified-element'):
|
43 |
+
pass
|
44 |
+
with gr.Row(equal_height=True,elem_classes='justified-element'):
|
45 |
+
with gr.Column(scale=0,min_width=BLOCK_WIDTH):
|
46 |
+
object_path_eq_2 = gr.Image(label="Upload object image", type="filepath",width=BLOCK_WIDTH,height=BLOCK_HEIGHT)
|
47 |
+
with gr.Column(scale=0,min_width=50):
|
48 |
+
gr.HTML(f'''<div style="justify-content: center; align-items: center;min-height:{BLOCK_HEIGHT}px"><span class="vertical-center" style="color:#efa241;font-size:{FONT_SIZE}rem;font-family:'Google Sans', sans-serif";>O</span></div>''')
|
49 |
+
with gr.Column(scale=0,min_width=BLOCK_WIDTH):
|
50 |
+
texture_path_eq_2 = gr.Image(label="Upload texture image", type="filepath",width=BLOCK_WIDTH,height=BLOCK_HEIGHT)
|
51 |
+
# texture_path = gr.Image(label="Upload texture image", type="filepath",width=BLOCK_WIDTH,height=BLOCK_HEIGHT)
|
52 |
+
with gr.Column(scale=0,min_width=50):
|
53 |
+
gr.HTML(f'''<div style="justify-content: center; align-items: center;min-height:{BLOCK_HEIGHT}px"><span class="vertical-center" style="color:#A085FF;font-size:{FONT_SIZE}rem;font-family:'Google Sans', sans-serif";>O</span></div>''')
|
54 |
+
with gr.Column(scale=0,min_width=BLOCK_WIDTH):
|
55 |
+
scene_path_eq_2 = gr.Image(label="Upload scene image", type="filepath",width=BLOCK_WIDTH,height=BLOCK_HEIGHT)
|
56 |
+
with gr.Column(scale=0,min_width=50):
|
57 |
+
gr.HTML(f'''<div style="justify-content: center; align-items: center;min-height:{BLOCK_HEIGHT}px"><span class="vertical-center" style="color:#A085FF;font-size:{FONT_SIZE}rem;font-family:'Google Sans', sans-serif";>=</span></div>''')
|
58 |
+
with gr.Column(scale=0,min_width=BLOCK_WIDTH):
|
59 |
+
output_eq_2 = gr.Image(label="Output",width=BLOCK_WIDTH,height=BLOCK_HEIGHT)
|
60 |
+
with gr.Row(equal_height=True, elem_classes='justified-element'):
|
61 |
+
run_button_eq_2 = gr.Button("Run Texture and Scene Equation",elem_classes='small-elem')
|
62 |
+
run_button_eq_2.click(fn=run_equation_2,inputs=[object_path_eq_2, texture_path_eq_2, scene_path_eq_2],outputs=[output_eq_2])
|
63 |
+
|
64 |
+
|
65 |
+
with gr.Row(equal_height=True, elem_classes='justified-element'):
|
66 |
+
with gr.Column(scale=1):
|
67 |
+
examples = [
|
68 |
+
['inputs/birmingham-museums-trust-q2OwlfXAYfo-unsplash.jpg', 'enormous',
|
69 |
+
'inputs/mihaly-varga-AQFfdEY3X4Q-unsplash.jpg'],
|
70 |
+
['inputs/r-n-tyfqOL1FAQc-unsplash.jpg', 'group', 'inputs/george-webster-p1VZ5IbT2Tg-unsplash.jpg'],
|
71 |
+
]
|
72 |
+
gr.Examples(examples=examples,
|
73 |
+
inputs=[object_path_eq_1, text_eq_1, texture_path_eq_1],
|
74 |
+
outputs=[output_eq_1],
|
75 |
+
fn=run_equation_1,
|
76 |
+
cache_examples=False)
|
77 |
+
examples_2 = [
|
78 |
+
['inputs/hannah-pemberton-3d82e5_ylGo-unsplash.jpg', 'inputs/engin-akyurt-aXVro7lQyUM-unsplash.jpg', 'inputs/alexandra-zelena-phskyemu_c4-unsplash.jpg'],
|
79 |
+
]
|
80 |
+
gr.Examples(examples=examples_2,
|
81 |
+
inputs=[object_path_eq_2, texture_path_eq_2, scene_path_eq_2],
|
82 |
+
outputs=[output_eq_2],
|
83 |
+
fn=run_equation_2,
|
84 |
+
cache_examples=False)
|
85 |
+
with gr.Column(scale=1):
|
86 |
+
gr.HTML('''
|
87 |
+
<div class="column">
|
88 |
+
<h2 class="">🎶 Learn More 🎶</h2>
|
89 |
+
<div class="">
|
90 |
+
<div height="100%">
|
91 |
+
<video src="https://github.com/pOpsPaper/pOps/raw/gh-pages/static/figures/teaser_video.mp4" controls ></video>
|
92 |
+
</div>
|
93 |
+
</div>
|
94 |
+
<div class=""><small>
|
95 |
+
Audio track for the teaser video was generated with the help of <a href="https://suno.com/">suno</a>.
|
96 |
+
</small>
|
97 |
+
</div>
|
98 |
+
|
99 |
+
''')
|
100 |
+
|
101 |
+
demo.queue().launch()
|
inputs/alexandra-zelena-phskyemu_c4-unsplash.jpg
ADDED
inputs/birmingham-museums-trust-q2OwlfXAYfo-unsplash.jpg
ADDED
inputs/engin-akyurt-aXVro7lQyUM-unsplash.jpg
ADDED
inputs/george-webster-p1VZ5IbT2Tg-unsplash.jpg
ADDED
inputs/hannah-pemberton-3d82e5_ylGo-unsplash.jpg
ADDED
inputs/mihaly-varga-AQFfdEY3X4Q-unsplash.jpg
ADDED
inputs/r-n-tyfqOL1FAQc-unsplash.jpg
ADDED
model/__init__.py
ADDED
File without changes
|
model/pipeline_pops.py
ADDED
@@ -0,0 +1,553 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Union
|
2 |
+
|
3 |
+
import PIL
|
4 |
+
import torch
|
5 |
+
from transformers import CLIPImageProcessor, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionModelWithProjection
|
6 |
+
|
7 |
+
from diffusers.models import PriorTransformer
|
8 |
+
from diffusers.schedulers import UnCLIPScheduler
|
9 |
+
from diffusers.utils import (
|
10 |
+
is_accelerate_available,
|
11 |
+
is_accelerate_version,
|
12 |
+
logging,
|
13 |
+
replace_example_docstring,
|
14 |
+
)
|
15 |
+
from diffusers.utils.torch_utils import randn_tensor
|
16 |
+
|
17 |
+
from diffusers.pipelines.kandinsky import KandinskyPriorPipelineOutput
|
18 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
22 |
+
|
23 |
+
EXAMPLE_DOC_STRING = """
|
24 |
+
Examples:
|
25 |
+
```py
|
26 |
+
>>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline
|
27 |
+
>>> import torch
|
28 |
+
|
29 |
+
>>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior")
|
30 |
+
>>> pipe_prior.to("cuda")
|
31 |
+
>>> prompt = "red cat, 4k photo"
|
32 |
+
>>> image_emb, negative_image_emb = pipe_prior(prompt).to_tuple()
|
33 |
+
|
34 |
+
>>> pipe = KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder")
|
35 |
+
>>> pipe.to("cuda")
|
36 |
+
>>> image = pipe(
|
37 |
+
... image_embeds=image_emb,
|
38 |
+
... negative_image_embeds=negative_image_emb,
|
39 |
+
... height=768,
|
40 |
+
... width=768,
|
41 |
+
... num_inference_steps=50,
|
42 |
+
... ).images
|
43 |
+
>>> image[0].save("cat.png")
|
44 |
+
```
|
45 |
+
"""
|
46 |
+
|
47 |
+
EXAMPLE_INTERPOLATE_DOC_STRING = """
|
48 |
+
Examples:
|
49 |
+
```py
|
50 |
+
>>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22Pipeline
|
51 |
+
>>> from diffusers.utils import load_image
|
52 |
+
>>> import PIL
|
53 |
+
>>> import torch
|
54 |
+
>>> from torchvision import transforms
|
55 |
+
|
56 |
+
>>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
|
57 |
+
... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16
|
58 |
+
... )
|
59 |
+
>>> pipe_prior.to("cuda")
|
60 |
+
>>> img1 = load_image(
|
61 |
+
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
62 |
+
... "/kandinsky/cat.png"
|
63 |
+
... )
|
64 |
+
>>> img2 = load_image(
|
65 |
+
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
66 |
+
... "/kandinsky/starry_night.jpeg"
|
67 |
+
... )
|
68 |
+
>>> images_texts = ["a cat", img1, img2]
|
69 |
+
>>> weights = [0.3, 0.3, 0.4]
|
70 |
+
>>> out = pipe_prior.interpolate(images_texts, weights)
|
71 |
+
>>> pipe = KandinskyV22Pipeline.from_pretrained(
|
72 |
+
... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16
|
73 |
+
... )
|
74 |
+
>>> pipe.to("cuda")
|
75 |
+
>>> image = pipe(
|
76 |
+
... image_embeds=out.image_embeds,
|
77 |
+
... negative_image_embeds=out.negative_image_embeds,
|
78 |
+
... height=768,
|
79 |
+
... width=768,
|
80 |
+
... num_inference_steps=50,
|
81 |
+
... ).images[0]
|
82 |
+
>>> image.save("starry_cat.png")
|
83 |
+
```
|
84 |
+
"""
|
85 |
+
|
86 |
+
|
87 |
+
class pOpsPipeline(DiffusionPipeline):
|
88 |
+
"""
|
89 |
+
Pipeline for generating image prior for Kandinsky
|
90 |
+
|
91 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
92 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
93 |
+
|
94 |
+
Args:
|
95 |
+
prior ([`PriorTransformer`]):
|
96 |
+
The canonincal unCLIP prior to approximate the image embedding from the text embedding.
|
97 |
+
image_encoder ([`CLIPVisionModelWithProjection`]):
|
98 |
+
Frozen image-encoder.
|
99 |
+
text_encoder ([`CLIPTextModelWithProjection`]):
|
100 |
+
Frozen text-encoder.
|
101 |
+
tokenizer (`CLIPTokenizer`):
|
102 |
+
Tokenizer of class
|
103 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
104 |
+
scheduler ([`UnCLIPScheduler`]):
|
105 |
+
A scheduler to be used in combination with `prior` to generate image embedding.
|
106 |
+
image_processor ([`CLIPImageProcessor`]):
|
107 |
+
A image_processor to be used to preprocess image from clip.
|
108 |
+
"""
|
109 |
+
|
110 |
+
_exclude_from_cpu_offload = ["prior"]
|
111 |
+
|
112 |
+
def __init__(
|
113 |
+
self,
|
114 |
+
prior: PriorTransformer,
|
115 |
+
image_encoder: CLIPVisionModelWithProjection,
|
116 |
+
text_encoder: CLIPTextModelWithProjection,
|
117 |
+
tokenizer: CLIPTokenizer,
|
118 |
+
scheduler: UnCLIPScheduler,
|
119 |
+
image_processor: CLIPImageProcessor,
|
120 |
+
):
|
121 |
+
super().__init__()
|
122 |
+
|
123 |
+
self.register_modules(
|
124 |
+
prior=prior,
|
125 |
+
text_encoder=text_encoder,
|
126 |
+
tokenizer=tokenizer,
|
127 |
+
scheduler=scheduler,
|
128 |
+
image_encoder=image_encoder,
|
129 |
+
image_processor=image_processor,
|
130 |
+
)
|
131 |
+
|
132 |
+
@torch.no_grad()
|
133 |
+
@replace_example_docstring(EXAMPLE_INTERPOLATE_DOC_STRING)
|
134 |
+
def interpolate(
|
135 |
+
self,
|
136 |
+
images_and_prompts: List[Union[str, PIL.Image.Image, torch.FloatTensor]],
|
137 |
+
weights: List[float],
|
138 |
+
num_images_per_prompt: int = 1,
|
139 |
+
num_inference_steps: int = 25,
|
140 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
141 |
+
latents: Optional[torch.FloatTensor] = None,
|
142 |
+
negative_prior_prompt: Optional[str] = None,
|
143 |
+
negative_prompt: str = "",
|
144 |
+
guidance_scale: float = 4.0,
|
145 |
+
device=None,
|
146 |
+
):
|
147 |
+
"""
|
148 |
+
Function invoked when using the prior pipeline for interpolation.
|
149 |
+
|
150 |
+
Args:
|
151 |
+
images_and_prompts (`List[Union[str, PIL.Image.Image, torch.FloatTensor]]`):
|
152 |
+
list of prompts and images to guide the image generation.
|
153 |
+
weights: (`List[float]`):
|
154 |
+
list of weights for each condition in `images_and_prompts`
|
155 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
156 |
+
The number of images to generate per prompt.
|
157 |
+
num_inference_steps (`int`, *optional*, defaults to 100):
|
158 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
159 |
+
expense of slower inference.
|
160 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
161 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
162 |
+
to make generation deterministic.
|
163 |
+
latents (`torch.FloatTensor`, *optional*):
|
164 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
165 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
166 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
167 |
+
negative_prior_prompt (`str`, *optional*):
|
168 |
+
The prompt not to guide the prior diffusion process. Ignored when not using guidance (i.e., ignored if
|
169 |
+
`guidance_scale` is less than `1`).
|
170 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
171 |
+
The prompt not to guide the image generation. Ignored when not using guidance (i.e., ignored if
|
172 |
+
`guidance_scale` is less than `1`).
|
173 |
+
guidance_scale (`float`, *optional*, defaults to 4.0):
|
174 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
175 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
176 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
177 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
178 |
+
usually at the expense of lower image quality.
|
179 |
+
|
180 |
+
Examples:
|
181 |
+
|
182 |
+
Returns:
|
183 |
+
[`KandinskyPriorPipelineOutput`] or `tuple`
|
184 |
+
"""
|
185 |
+
|
186 |
+
device = device or self.device
|
187 |
+
|
188 |
+
if len(images_and_prompts) != len(weights):
|
189 |
+
raise ValueError(
|
190 |
+
f"`images_and_prompts` contains {len(images_and_prompts)} items and `weights` contains {len(weights)} items - they should be lists of same length"
|
191 |
+
)
|
192 |
+
|
193 |
+
image_embeddings = []
|
194 |
+
for cond, weight in zip(images_and_prompts, weights):
|
195 |
+
if isinstance(cond, str):
|
196 |
+
image_emb = self(
|
197 |
+
cond,
|
198 |
+
num_inference_steps=num_inference_steps,
|
199 |
+
num_images_per_prompt=num_images_per_prompt,
|
200 |
+
generator=generator,
|
201 |
+
latents=latents,
|
202 |
+
negative_prompt=negative_prior_prompt,
|
203 |
+
guidance_scale=guidance_scale,
|
204 |
+
).image_embeds.unsqueeze(0)
|
205 |
+
|
206 |
+
elif isinstance(cond, (PIL.Image.Image, torch.Tensor)):
|
207 |
+
if isinstance(cond, PIL.Image.Image):
|
208 |
+
cond = (
|
209 |
+
self.image_processor(cond, return_tensors="pt")
|
210 |
+
.pixel_values[0]
|
211 |
+
.unsqueeze(0)
|
212 |
+
.to(dtype=self.image_encoder.dtype, device=device)
|
213 |
+
)
|
214 |
+
|
215 |
+
image_emb = self.image_encoder(cond)["image_embeds"].repeat(num_images_per_prompt, 1).unsqueeze(0)
|
216 |
+
|
217 |
+
else:
|
218 |
+
raise ValueError(
|
219 |
+
f"`images_and_prompts` can only contains elements to be of type `str`, `PIL.Image.Image` or `torch.Tensor` but is {type(cond)}"
|
220 |
+
)
|
221 |
+
|
222 |
+
image_embeddings.append(image_emb * weight)
|
223 |
+
|
224 |
+
image_emb = torch.cat(image_embeddings).sum(dim=0)
|
225 |
+
|
226 |
+
out_zero = self(
|
227 |
+
negative_prompt,
|
228 |
+
num_inference_steps=num_inference_steps,
|
229 |
+
num_images_per_prompt=num_images_per_prompt,
|
230 |
+
generator=generator,
|
231 |
+
latents=latents,
|
232 |
+
negative_prompt=negative_prior_prompt,
|
233 |
+
guidance_scale=guidance_scale,
|
234 |
+
)
|
235 |
+
zero_image_emb = out_zero.negative_image_embeds if negative_prompt == "" else out_zero.image_embeds
|
236 |
+
|
237 |
+
return KandinskyPriorPipelineOutput(image_embeds=image_emb, negative_image_embeds=zero_image_emb)
|
238 |
+
|
239 |
+
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents
|
240 |
+
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler):
|
241 |
+
if latents is None:
|
242 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
243 |
+
else:
|
244 |
+
if latents.shape != shape:
|
245 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
246 |
+
latents = latents.to(device)
|
247 |
+
|
248 |
+
latents = latents * scheduler.init_noise_sigma
|
249 |
+
return latents
|
250 |
+
|
251 |
+
# Copied from diffusers.pipelines.kandinsky.pipeline_kandinsky_prior.KandinskyPriorPipeline.get_zero_embed
|
252 |
+
def get_zero_embed(self, batch_size=1, device=None):
|
253 |
+
device = device or self.device
|
254 |
+
zero_img = torch.zeros(1, 3, self.image_encoder.config.image_size, self.image_encoder.config.image_size).to(
|
255 |
+
device=device, dtype=self.image_encoder.dtype
|
256 |
+
)
|
257 |
+
zero_image_emb = self.image_encoder(zero_img)["image_embeds"]
|
258 |
+
zero_image_emb = zero_image_emb.repeat(batch_size, 1)
|
259 |
+
return zero_image_emb
|
260 |
+
|
261 |
+
# Copied from diffusers.pipelines.kandinsky.pipeline_kandinsky_prior.KandinskyPriorPipeline._encode_prompt
|
262 |
+
def _encode_prompt(
|
263 |
+
self,
|
264 |
+
prompt,
|
265 |
+
device,
|
266 |
+
num_images_per_prompt,
|
267 |
+
do_classifier_free_guidance,
|
268 |
+
negative_prompt=None,
|
269 |
+
):
|
270 |
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
271 |
+
# get prompt text embeddings
|
272 |
+
text_inputs = self.tokenizer(
|
273 |
+
prompt,
|
274 |
+
padding="max_length",
|
275 |
+
max_length=self.tokenizer.model_max_length,
|
276 |
+
truncation=True,
|
277 |
+
return_tensors="pt",
|
278 |
+
)
|
279 |
+
text_input_ids = text_inputs.input_ids
|
280 |
+
text_mask = text_inputs.attention_mask.bool().to(device)
|
281 |
+
|
282 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
283 |
+
|
284 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
285 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
|
286 |
+
logger.warning(
|
287 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
288 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
289 |
+
)
|
290 |
+
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
|
291 |
+
|
292 |
+
text_encoder_output = self.text_encoder(text_input_ids.to(device))
|
293 |
+
|
294 |
+
prompt_embeds = text_encoder_output.text_embeds
|
295 |
+
text_encoder_hidden_states = text_encoder_output.last_hidden_state
|
296 |
+
|
297 |
+
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
298 |
+
text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
299 |
+
text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0)
|
300 |
+
|
301 |
+
if do_classifier_free_guidance:
|
302 |
+
uncond_tokens: List[str]
|
303 |
+
if negative_prompt is None:
|
304 |
+
uncond_tokens = [""] * batch_size
|
305 |
+
elif type(prompt) is not type(negative_prompt):
|
306 |
+
raise TypeError(
|
307 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
308 |
+
f" {type(prompt)}."
|
309 |
+
)
|
310 |
+
elif isinstance(negative_prompt, str):
|
311 |
+
uncond_tokens = [negative_prompt]
|
312 |
+
elif batch_size != len(negative_prompt):
|
313 |
+
raise ValueError(
|
314 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
315 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
316 |
+
" the batch size of `prompt`."
|
317 |
+
)
|
318 |
+
else:
|
319 |
+
uncond_tokens = negative_prompt
|
320 |
+
|
321 |
+
uncond_input = self.tokenizer(
|
322 |
+
uncond_tokens,
|
323 |
+
padding="max_length",
|
324 |
+
max_length=self.tokenizer.model_max_length,
|
325 |
+
truncation=True,
|
326 |
+
return_tensors="pt",
|
327 |
+
)
|
328 |
+
uncond_text_mask = uncond_input.attention_mask.bool().to(device)
|
329 |
+
negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device))
|
330 |
+
|
331 |
+
negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds
|
332 |
+
uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state
|
333 |
+
|
334 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
335 |
+
|
336 |
+
seq_len = negative_prompt_embeds.shape[1]
|
337 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt)
|
338 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len)
|
339 |
+
|
340 |
+
seq_len = uncond_text_encoder_hidden_states.shape[1]
|
341 |
+
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1)
|
342 |
+
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view(
|
343 |
+
batch_size * num_images_per_prompt, seq_len, -1
|
344 |
+
)
|
345 |
+
uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0)
|
346 |
+
|
347 |
+
# done duplicates
|
348 |
+
|
349 |
+
# For classifier free guidance, we need to do two forward passes.
|
350 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
351 |
+
# to avoid doing two forward passes
|
352 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
353 |
+
text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states])
|
354 |
+
|
355 |
+
text_mask = torch.cat([uncond_text_mask, text_mask])
|
356 |
+
|
357 |
+
return prompt_embeds, text_encoder_hidden_states, text_mask
|
358 |
+
|
359 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
360 |
+
r"""
|
361 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
362 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
363 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
364 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
365 |
+
"""
|
366 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
367 |
+
from accelerate import cpu_offload_with_hook
|
368 |
+
else:
|
369 |
+
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
370 |
+
|
371 |
+
device = torch.device(f"cuda:{gpu_id}")
|
372 |
+
|
373 |
+
if self.device.type != "cpu":
|
374 |
+
self.to("cpu", silence_dtype_warnings=True)
|
375 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
376 |
+
|
377 |
+
hook = None
|
378 |
+
for cpu_offloaded_model in [self.text_encoder, self.prior]:
|
379 |
+
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
380 |
+
|
381 |
+
# We'll offload the last model manually.
|
382 |
+
self.prior_hook = hook
|
383 |
+
|
384 |
+
_, hook = cpu_offload_with_hook(self.image_encoder, device, prev_module_hook=self.prior_hook)
|
385 |
+
|
386 |
+
self.final_offload_hook = hook
|
387 |
+
|
388 |
+
@torch.no_grad()
|
389 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
390 |
+
def __call__(
|
391 |
+
self,
|
392 |
+
input_embeds: torch.FloatTensor,
|
393 |
+
input_hidden_states: torch.FloatTensor,
|
394 |
+
negative_input_embeds: Optional[torch.FloatTensor] = None,
|
395 |
+
negative_input_hidden_states: Optional[torch.FloatTensor] = None,
|
396 |
+
input_mask: Optional[torch.FloatTensor]=None,
|
397 |
+
num_images_per_prompt: int = 1,
|
398 |
+
num_inference_steps: int = 25,
|
399 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
400 |
+
latents: Optional[torch.FloatTensor] = None,
|
401 |
+
guidance_scale: float = 1.0,
|
402 |
+
output_type: Optional[str] = "pt", # pt only
|
403 |
+
return_dict: bool = True,
|
404 |
+
):
|
405 |
+
"""
|
406 |
+
Function invoked when calling the pipeline for generation.
|
407 |
+
|
408 |
+
Args:
|
409 |
+
prompt (`str` or `List[str]`):
|
410 |
+
The prompt or prompts to guide the image generation.
|
411 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
412 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
413 |
+
if `guidance_scale` is less than `1`).
|
414 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
415 |
+
The number of images to generate per prompt.
|
416 |
+
num_inference_steps (`int`, *optional*, defaults to 100):
|
417 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
418 |
+
expense of slower inference.
|
419 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
420 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
421 |
+
to make generation deterministic.
|
422 |
+
latents (`torch.FloatTensor`, *optional*):
|
423 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
424 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
425 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
426 |
+
guidance_scale (`float`, *optional*, defaults to 4.0):
|
427 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
428 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
429 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
430 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
431 |
+
usually at the expense of lower image quality.
|
432 |
+
output_type (`str`, *optional*, defaults to `"pt"`):
|
433 |
+
The output format of the generate image. Choose between: `"np"` (`np.array`) or `"pt"`
|
434 |
+
(`torch.Tensor`).
|
435 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
436 |
+
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
|
437 |
+
|
438 |
+
Examples:
|
439 |
+
|
440 |
+
Returns:
|
441 |
+
[`KandinskyPriorPipelineOutput`] or `tuple`
|
442 |
+
"""
|
443 |
+
|
444 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
445 |
+
if do_classifier_free_guidance:
|
446 |
+
if negative_input_embeds is None or negative_input_hidden_states is None:
|
447 |
+
raise ValueError('negative_input_embeds and negative_input_hidden_states must be provided')
|
448 |
+
|
449 |
+
device = self._execution_device
|
450 |
+
|
451 |
+
batch_size = input_embeds.shape[0]
|
452 |
+
batch_size = batch_size * num_images_per_prompt
|
453 |
+
|
454 |
+
prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt(
|
455 |
+
"", device, num_images_per_prompt, False, ""
|
456 |
+
)
|
457 |
+
|
458 |
+
# prior
|
459 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
460 |
+
prior_timesteps_tensor = self.scheduler.timesteps
|
461 |
+
|
462 |
+
embedding_dim = self.prior.config.embedding_dim
|
463 |
+
|
464 |
+
latents = self.prepare_latents(
|
465 |
+
(batch_size, embedding_dim),
|
466 |
+
prompt_embeds.dtype,
|
467 |
+
device,
|
468 |
+
generator,
|
469 |
+
latents,
|
470 |
+
self.scheduler,
|
471 |
+
)
|
472 |
+
|
473 |
+
for i, t in enumerate(self.progress_bar(prior_timesteps_tensor)):
|
474 |
+
# expand the latents if we are doing classifier free guidance
|
475 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
476 |
+
|
477 |
+
# TODO: I can stop being dependent on the text encoder size
|
478 |
+
image_feat_seq = torch.zeros_like(text_encoder_hidden_states)
|
479 |
+
image_feat_seq[:, :input_hidden_states.shape[1]] = input_hidden_states
|
480 |
+
if input_mask is not None:
|
481 |
+
image_txt_mask = input_mask
|
482 |
+
else:
|
483 |
+
image_txt_mask = torch.zeros_like(text_mask)
|
484 |
+
image_txt_mask[:, :input_hidden_states.shape[1]] = 1
|
485 |
+
proj_embedding = input_embeds
|
486 |
+
|
487 |
+
if do_classifier_free_guidance:
|
488 |
+
neg_image_feat_seq = torch.zeros_like(text_encoder_hidden_states)
|
489 |
+
neg_image_feat_seq[:, :negative_input_hidden_states.shape[1]] = negative_input_hidden_states
|
490 |
+
if input_mask is not None:
|
491 |
+
neg_image_txt_mask = input_mask
|
492 |
+
else:
|
493 |
+
neg_image_txt_mask = torch.zeros_like(text_mask)
|
494 |
+
neg_image_txt_mask[:, :negative_input_hidden_states.shape[1]] = 1
|
495 |
+
proj_embedding = torch.cat([negative_input_embeds, proj_embedding])
|
496 |
+
image_feat_seq = torch.cat([neg_image_feat_seq, image_feat_seq])
|
497 |
+
image_txt_mask = torch.cat([neg_image_txt_mask, image_txt_mask])
|
498 |
+
|
499 |
+
predicted_image_embedding = self.prior(
|
500 |
+
latent_model_input,
|
501 |
+
timestep=t,
|
502 |
+
proj_embedding=proj_embedding,
|
503 |
+
encoder_hidden_states=image_feat_seq,
|
504 |
+
attention_mask=image_txt_mask,
|
505 |
+
).predicted_image_embedding
|
506 |
+
|
507 |
+
if do_classifier_free_guidance:
|
508 |
+
# print(f'Doing guidance with scale {guidance_scale}')
|
509 |
+
predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2)
|
510 |
+
predicted_image_embedding = predicted_image_embedding_uncond + guidance_scale * (
|
511 |
+
predicted_image_embedding_text - predicted_image_embedding_uncond
|
512 |
+
)
|
513 |
+
|
514 |
+
if i + 1 == prior_timesteps_tensor.shape[0]:
|
515 |
+
prev_timestep = None
|
516 |
+
else:
|
517 |
+
prev_timestep = prior_timesteps_tensor[i + 1]
|
518 |
+
|
519 |
+
latents = self.scheduler.step(
|
520 |
+
predicted_image_embedding,
|
521 |
+
timestep=t,
|
522 |
+
sample=latents,
|
523 |
+
generator=generator,
|
524 |
+
prev_timestep=prev_timestep,
|
525 |
+
).prev_sample
|
526 |
+
|
527 |
+
latents = self.prior.post_process_latents(latents)
|
528 |
+
|
529 |
+
image_embeddings = latents
|
530 |
+
|
531 |
+
# if negative prompt has been defined, we retrieve split the image embedding into two
|
532 |
+
# if negative_prompt is None:
|
533 |
+
zero_embeds = self.get_zero_embed(latents.shape[0], device=latents.device)
|
534 |
+
|
535 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
536 |
+
self.final_offload_hook.offload()
|
537 |
+
# else:
|
538 |
+
# image_embeddings, zero_embeds = image_embeddings.chunk(2)
|
539 |
+
#
|
540 |
+
# if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
541 |
+
# self.prior_hook.offload()
|
542 |
+
|
543 |
+
if output_type not in ["pt", "np"]:
|
544 |
+
raise ValueError(f"Only the output types `pt` and `np` are supported not output_type={output_type}")
|
545 |
+
|
546 |
+
if output_type == "np":
|
547 |
+
image_embeddings = image_embeddings.cpu().numpy()
|
548 |
+
zero_embeds = zero_embeds.cpu().numpy()
|
549 |
+
|
550 |
+
if not return_dict:
|
551 |
+
return (image_embeddings, zero_embeds)
|
552 |
+
|
553 |
+
return KandinskyPriorPipelineOutput(image_embeds=image_embeddings, negative_image_embeds=zero_embeds)
|
model/pops_utils.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from typing import List, Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
|
7 |
+
def preprocess(image_a: torch.Tensor, image_b: torch.Tensor, image_encoder: nn.Module, clip_mean: torch.Tensor,
|
8 |
+
clip_std: torch.Tensor, should_drop_cond: List[Tuple[bool, bool]] = None, concat_hidden_states=None,
|
9 |
+
image_list=None):
|
10 |
+
with torch.no_grad():
|
11 |
+
image_list = [] if image_list is None else image_list
|
12 |
+
additional_list = []
|
13 |
+
if image_a is not None:
|
14 |
+
additional_list.append(image_a)
|
15 |
+
if image_b is not None:
|
16 |
+
additional_list.append(image_b)
|
17 |
+
image_list = additional_list + image_list
|
18 |
+
embeds_list = []
|
19 |
+
for image in image_list:
|
20 |
+
# If already is vector skip encoder
|
21 |
+
if len(image.shape) == 2:
|
22 |
+
image_embeds = image
|
23 |
+
else:
|
24 |
+
encoder_outs = image_encoder(image, output_hidden_states=False)
|
25 |
+
image_embeds = encoder_outs.image_embeds
|
26 |
+
image_embeds = (image_embeds - clip_mean) / clip_std
|
27 |
+
embeds_list.append(image_embeds.unsqueeze(1))
|
28 |
+
if should_drop_cond is not None:
|
29 |
+
for b_ind in range(embeds_list[0].shape[0]):
|
30 |
+
should_drop_a, should_drop_b = should_drop_cond[b_ind]
|
31 |
+
if should_drop_a:
|
32 |
+
embeds_list[0][b_ind] = torch.zeros_like(embeds_list[0][b_ind])
|
33 |
+
if should_drop_b and image_b is not None:
|
34 |
+
embeds_list[1][b_ind] = torch.zeros_like(embeds_list[1][b_ind])
|
35 |
+
if concat_hidden_states is not None:
|
36 |
+
embeds_list.append(concat_hidden_states)
|
37 |
+
out_hidden_states = torch.concat(embeds_list, dim=1)
|
38 |
+
|
39 |
+
image_embeds = torch.zeros_like(embeds_list[0].squeeze(1))
|
40 |
+
|
41 |
+
return image_embeds, out_hidden_states
|
pops.py
ADDED
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from diffusers import PriorTransformer, UNet2DConditionModel, KandinskyV22Pipeline
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor, CLIPTokenizer, CLIPTextModelWithProjection
|
7 |
+
|
8 |
+
from model import pops_utils
|
9 |
+
from model.pipeline_pops import pOpsPipeline
|
10 |
+
|
11 |
+
kandinsky_prior_repo: str = 'kandinsky-community/kandinsky-2-2-prior'
|
12 |
+
kandinsky_decoder_repo: str = 'kandinsky-community/kandinsky-2-2-decoder'
|
13 |
+
prior_texture_repo: str = 'models/texturing/learned_prior.pth'
|
14 |
+
prior_instruct_repo: str = 'models/instruct/learned_prior.pth'
|
15 |
+
prior_scene_repo: str = 'models/scene/learned_prior.pth'
|
16 |
+
prior_repo = "pOpsPaper/operators"
|
17 |
+
|
18 |
+
gpu = torch.device('cuda')
|
19 |
+
cpu = torch.device('cpu')
|
20 |
+
|
21 |
+
class PopsPipelines:
|
22 |
+
def __init__(self):
|
23 |
+
weight_dtype = torch.float16
|
24 |
+
self.weight_dtype = weight_dtype
|
25 |
+
device = 'cuda:0'
|
26 |
+
self.device = device
|
27 |
+
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(kandinsky_prior_repo,
|
28 |
+
subfolder='image_encoder',
|
29 |
+
torch_dtype=weight_dtype).eval()
|
30 |
+
self.image_encoder.requires_grad_(False)
|
31 |
+
|
32 |
+
self.image_processor = CLIPImageProcessor.from_pretrained(kandinsky_prior_repo,
|
33 |
+
subfolder='image_processor')
|
34 |
+
|
35 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(kandinsky_prior_repo, subfolder='tokenizer')
|
36 |
+
self.text_encoder = CLIPTextModelWithProjection.from_pretrained(kandinsky_prior_repo,
|
37 |
+
subfolder='text_encoder',
|
38 |
+
torch_dtype=weight_dtype).eval().to(device)
|
39 |
+
|
40 |
+
# Load full model for vis
|
41 |
+
self.unet = UNet2DConditionModel.from_pretrained(kandinsky_decoder_repo,
|
42 |
+
subfolder='unet').to(torch.float16).to(device)
|
43 |
+
|
44 |
+
|
45 |
+
self.decoder = KandinskyV22Pipeline.from_pretrained(kandinsky_decoder_repo, unet=self.unet,
|
46 |
+
torch_dtype=torch.float16)
|
47 |
+
self.decoder = self.decoder.to(device)
|
48 |
+
|
49 |
+
|
50 |
+
self.priors_dict = {
|
51 |
+
'texturing':{'repo':prior_texture_repo},
|
52 |
+
'instruct': {'repo': prior_instruct_repo},
|
53 |
+
'scene': {'repo':prior_scene_repo}
|
54 |
+
}
|
55 |
+
|
56 |
+
for prior_type in self.priors_dict:
|
57 |
+
prior_path = self.priors_dict[prior_type]['repo']
|
58 |
+
prior = PriorTransformer.from_pretrained(
|
59 |
+
kandinsky_prior_repo, subfolder="prior"
|
60 |
+
)
|
61 |
+
|
62 |
+
# Load from huggingface
|
63 |
+
prior_path = hf_hub_download(repo_id=prior_repo, filename=str(prior_path))
|
64 |
+
prior_state_dict = torch.load(prior_path, map_location=device)
|
65 |
+
prior.load_state_dict(prior_state_dict, strict=False)
|
66 |
+
|
67 |
+
prior.eval()
|
68 |
+
prior = prior.to(weight_dtype)
|
69 |
+
|
70 |
+
prior_pipeline = pOpsPipeline.from_pretrained(kandinsky_prior_repo,
|
71 |
+
prior=prior,
|
72 |
+
image_encoder=self.image_encoder,
|
73 |
+
torch_dtype=torch.float16)
|
74 |
+
|
75 |
+
self.priors_dict[prior_type]['pipeline'] = prior_pipeline
|
76 |
+
|
77 |
+
def process_image(self, input_path):
|
78 |
+
if input_path is None:
|
79 |
+
return None
|
80 |
+
image_pil = Image.open(input_path).convert("RGB").resize((512, 512))
|
81 |
+
image = torch.Tensor(self.image_processor(image_pil)['pixel_values'][0]).to(self.device).unsqueeze(0).to(
|
82 |
+
self.weight_dtype)
|
83 |
+
|
84 |
+
return image
|
85 |
+
|
86 |
+
def process_text(self, text):
|
87 |
+
text_inputs = self.tokenizer(
|
88 |
+
text,
|
89 |
+
padding="max_length",
|
90 |
+
max_length=self.tokenizer.model_max_length,
|
91 |
+
truncation=True,
|
92 |
+
return_tensors="pt",
|
93 |
+
)
|
94 |
+
mask = text_inputs.attention_mask.bool() # [0]
|
95 |
+
|
96 |
+
text_encoder_output = self.text_encoder(text_inputs.input_ids.to(self.device))
|
97 |
+
text_encoder_hidden_states = text_encoder_output.last_hidden_state
|
98 |
+
text_encoder_concat = text_encoder_hidden_states[:, :mask.sum().item()]
|
99 |
+
return text_encoder_concat
|
100 |
+
|
101 |
+
def run_binary(self, input_a, input_b, prior_type):
|
102 |
+
# Move pipeline to GPU
|
103 |
+
pipeline = self.priors_dict[prior_type]['pipeline']
|
104 |
+
pipeline.to('cuda')
|
105 |
+
input_image_embeds, input_hidden_state = pops_utils.preprocess(input_a, input_b,
|
106 |
+
self.image_encoder,
|
107 |
+
pipeline.prior.clip_mean.detach(),
|
108 |
+
pipeline.prior.clip_std.detach())
|
109 |
+
|
110 |
+
negative_input_embeds = torch.zeros_like(input_image_embeds)
|
111 |
+
negative_hidden_states = torch.zeros_like(input_hidden_state)
|
112 |
+
|
113 |
+
guidance_scale = 1.0
|
114 |
+
if prior_type == 'texturing':
|
115 |
+
guidance_scale = 8.0
|
116 |
+
|
117 |
+
img_emb = pipeline(input_embeds=input_image_embeds, input_hidden_states=input_hidden_state,
|
118 |
+
negative_input_embeds=negative_input_embeds,
|
119 |
+
negative_input_hidden_states=negative_hidden_states,
|
120 |
+
num_inference_steps=25,
|
121 |
+
num_images_per_prompt=1,
|
122 |
+
guidance_scale=guidance_scale)
|
123 |
+
|
124 |
+
# Optional
|
125 |
+
if prior_type == 'scene':
|
126 |
+
# Scene is the closet to what avg represents for a background image so incorporate that as well
|
127 |
+
mean_emb = 0.5 * input_hidden_state[:, 0] + 0.5 * input_hidden_state[:, 1]
|
128 |
+
mean_emb = (mean_emb * pipeline.prior.clip_std) + pipeline.prior.clip_mean
|
129 |
+
alpha = 0.4
|
130 |
+
img_emb.image_embeds = (1 - alpha) * img_emb.image_embeds + alpha * mean_emb
|
131 |
+
|
132 |
+
# Move pipeline to CPU
|
133 |
+
pipeline.to('cpu')
|
134 |
+
return img_emb
|
135 |
+
|
136 |
+
def run_instruct(self, input_a, text):
|
137 |
+
text_encodings = self.process_text(text)
|
138 |
+
|
139 |
+
# Move pipeline to GPU
|
140 |
+
instruct_pipeline = self.priors_dict['instruct']['pipeline']
|
141 |
+
instruct_pipeline.to('cuda')
|
142 |
+
input_image_embeds, input_hidden_state = pops_utils.preprocess(input_a, None,
|
143 |
+
self.image_encoder,
|
144 |
+
instruct_pipeline.prior.clip_mean.detach(), instruct_pipeline.prior.clip_std.detach(),
|
145 |
+
concat_hidden_states=text_encodings)
|
146 |
+
|
147 |
+
negative_input_embeds = torch.zeros_like(input_image_embeds)
|
148 |
+
negative_hidden_states = torch.zeros_like(input_hidden_state)
|
149 |
+
img_emb = instruct_pipeline(input_embeds=input_image_embeds, input_hidden_states=input_hidden_state,
|
150 |
+
negative_input_embeds=negative_input_embeds,
|
151 |
+
negative_input_hidden_states=negative_hidden_states,
|
152 |
+
num_inference_steps=25,
|
153 |
+
num_images_per_prompt=1,
|
154 |
+
guidance_scale=1.0)
|
155 |
+
|
156 |
+
# Move pipeline to CPU
|
157 |
+
instruct_pipeline.to('cpu')
|
158 |
+
return img_emb
|
159 |
+
|
160 |
+
def render(self, img_emb):
|
161 |
+
images = self.decoder(image_embeds=img_emb.image_embeds, negative_image_embeds=img_emb.negative_image_embeds,
|
162 |
+
num_inference_steps=50, height=512,
|
163 |
+
width=512, guidance_scale=4).images
|
164 |
+
|
165 |
+
return images[0]
|
166 |
+
|
167 |
+
def run_instruct_texture(self, image_object_path, text_instruct, image_texture_path):
|
168 |
+
# Process both inputs
|
169 |
+
image_object = self.process_image(image_object_path)
|
170 |
+
image_texture = self.process_image(image_texture_path)
|
171 |
+
|
172 |
+
if image_object is None:
|
173 |
+
raise gr.Error('Object image is required')
|
174 |
+
|
175 |
+
current_emb = None
|
176 |
+
|
177 |
+
if image_texture is None:
|
178 |
+
instruct_input = image_object
|
179 |
+
else:
|
180 |
+
# Run texturing
|
181 |
+
current_emb = self.run_binary(input_a=image_object, input_b=image_texture,prior_type='texturing')
|
182 |
+
instruct_input = current_emb.image_embeds
|
183 |
+
|
184 |
+
if text_instruct != '':
|
185 |
+
current_emb = self.run_instruct(input_a=instruct_input, text=text_instruct)
|
186 |
+
|
187 |
+
if current_emb is None:
|
188 |
+
raise gr.Error('At least one of the inputs is required')
|
189 |
+
|
190 |
+
# Render as image
|
191 |
+
image = self.render(current_emb)
|
192 |
+
|
193 |
+
return image
|
194 |
+
|
195 |
+
def run_texture_scene(self, image_object_path, image_texture_path, image_scene_path):
|
196 |
+
# Process both inputs
|
197 |
+
image_object = self.process_image(image_object_path)
|
198 |
+
image_texture = self.process_image(image_texture_path)
|
199 |
+
image_scene = self.process_image(image_scene_path)
|
200 |
+
|
201 |
+
if image_object is None:
|
202 |
+
raise gr.Error('Object image is required')
|
203 |
+
|
204 |
+
current_emb = None
|
205 |
+
|
206 |
+
if image_texture is None:
|
207 |
+
scene_input = image_object
|
208 |
+
else:
|
209 |
+
# Run texturing
|
210 |
+
current_emb = self.run_binary(input_a=image_object, input_b=image_scene,prior_type='scene')
|
211 |
+
scene_input = current_emb.image_embeds
|
212 |
+
|
213 |
+
# Run scene
|
214 |
+
if image_scene is not None:
|
215 |
+
current_emb = self.run_binary(input_a=scene_input, input_b=image_texture,prior_type='texturing')
|
216 |
+
|
217 |
+
if current_emb is None:
|
218 |
+
raise gr.Error('At least one of the images is required')
|
219 |
+
# Render as image
|
220 |
+
image = self.render(current_emb)
|
221 |
+
|
222 |
+
return image
|
223 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diffusers
|
2 |
+
transformers
|
3 |
+
Pillow
|
4 |
+
accelerate
|
5 |
+
torch
|
6 |
+
torchvision
|
style.css
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
h1, h2, h3 {
|
2 |
+
text-align: center;
|
3 |
+
margin: 0;
|
4 |
+
}
|
5 |
+
.vertical-center {
|
6 |
+
margin: 0;
|
7 |
+
position: absolute;
|
8 |
+
top: 50%;
|
9 |
+
-ms-transform: translateY(-50%);
|
10 |
+
transform: translateY(-50%);
|
11 |
+
}
|
12 |
+
|
13 |
+
.instruct {
|
14 |
+
min-height: 250px;
|
15 |
+
background-color: transparent;
|
16 |
+
border: transparent;
|
17 |
+
}
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
#component-0{
|
22 |
+
justify-content: center;
|
23 |
+
align-items: center;
|
24 |
+
}
|
25 |
+
|
26 |
+
#component-2{
|
27 |
+
justify-content: center;
|
28 |
+
align-items: center;
|
29 |
+
}
|
30 |
+
|
31 |
+
/*#component-3{*/
|
32 |
+
/* justify-content: center;*/
|
33 |
+
/* align-items: center;*/
|
34 |
+
/*}*/
|
35 |
+
|
36 |
+
.justified-element {
|
37 |
+
/*display: flex;*/
|
38 |
+
justify-content: center;
|
39 |
+
align-items: center;
|
40 |
+
}
|
41 |
+
|
42 |
+
.small-elem {
|
43 |
+
max-width: 400px;
|
44 |
+
}
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
.o-pops {
|
49 |
+
color: #82cf8e; /* Light green color */
|
50 |
+
font-weight: bold;
|
51 |
+
}
|
52 |
+
.o-operators {
|
53 |
+
color: #ac85cc; /* Light purple color */
|
54 |
+
font-weight: bold;
|
55 |
+
}
|