File size: 21,592 Bytes
416db21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
import pytorch_lightning as pl
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import OneCycleLR
from transformers import AutoTokenizer
import torch.nn as nn
import math
from torch.utils.data import DataLoader, Dataset
from datasets import load_dataset
import os
def _init_weights(module, std=0.02):
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
class RMSNorm(nn.Module):
def __init__(self, dim, eps=1e-5):
super().__init__()
self.eps = float(eps) # Ensure eps is a float
self.weight = nn.Parameter(torch.ones(dim))
def forward(self, x):
norm = torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
return x * norm * self.weight
class RotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000):
super().__init__()
self.dim = dim
self.max_position_embeddings = int(max_position_embeddings) # Convert to int
self.base = base
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
t = torch.arange(self.max_position_embeddings).type_as(self.inv_freq)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :])
self.register_buffer("sin_cached", emb.sin()[None, None, :, :])
def forward(self, x, seq_len=None):
# Convert seq_len to int and ensure it's a valid value
seq_len = int(seq_len) if seq_len is not None else x.size(1)
if seq_len > self.max_position_embeddings:
seq_len = self.max_position_embeddings
return (
self.cos_cached[:,:,:seq_len,:],
self.sin_cached[:,:,:seq_len,:]
)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin):
# Ensure proper broadcasting
cos = cos[:, :, :q.size(2), :] # [batch, 1, seq_len, dim]
sin = sin[:, :, :q.size(2), :] # [batch, 1, seq_len, dim]
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class Attention(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
self.num_attention_heads = config.num_attention_heads
self.num_key_value_heads = config.num_key_value_heads
self.head_dim = self.hidden_size // self.num_attention_heads
self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
def forward(self, hidden_states, cos, sin, attention_mask=None):
batch_size, seq_length, _ = hidden_states.shape
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
# Reshape for attention computation
q = q.view(batch_size, seq_length, self.num_attention_heads, self.head_dim)
k = k.view(batch_size, seq_length, self.num_key_value_heads, self.head_dim)
v = v.view(batch_size, seq_length, self.num_key_value_heads, self.head_dim)
# Transpose for attention computation
q = q.transpose(1, 2) # [batch, num_heads, seq_len, head_dim]
k = k.transpose(1, 2) # [batch, num_kv_heads, seq_len, head_dim]
v = v.transpose(1, 2) # [batch, num_kv_heads, seq_len, head_dim]
# Apply rotary embeddings
q, k = apply_rotary_pos_emb(q, k, cos, sin)
# Repeat k/v heads if num_key_value_heads < num_attention_heads
if self.num_key_value_heads != self.num_attention_heads:
k = k.repeat_interleave(self.num_attention_heads // self.num_key_value_heads, dim=1)
v = v.repeat_interleave(self.num_attention_heads // self.num_key_value_heads, dim=1)
# Compute attention
attn_weights = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
attn_weights = F.softmax(attn_weights, dim=-1)
# Compute output
output = torch.matmul(attn_weights, v)
output = output.transpose(1, 2).contiguous() # [batch, seq_len, num_heads, head_dim]
output = output.view(batch_size, seq_length, -1)
return self.o_proj(output)
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
self.act_fn = nn.SiLU()
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class DecoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.self_attn = Attention(config)
self.mlp = MLP(config)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(self, hidden_states, cos, sin, attention_mask=None):
# Self attention
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.self_attn(hidden_states, cos, sin, attention_mask)
hidden_states = residual + hidden_states
# MLP
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class SmolLM2(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
# Token embeddings
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
# Initialize transformer layers
self.layers = nn.ModuleList([
DecoderLayer(config) for _ in range(config.num_hidden_layers)
])
# Final layer norm
self.norm = RMSNorm(config.hidden_size, eps=float(config.rms_norm_eps))
# Initialize rotary embeddings
self.rotary_emb = RotaryEmbedding(
config.hidden_size // config.num_attention_heads,
max_position_embeddings=config.max_position_embeddings
)
# Initialize weights
self.apply(lambda p: _init_weights(p, std=config.initializer_range))
def forward(self, input_ids, attention_mask=None):
try:
# Ensure inputs are on the correct device
device = input_ids.device
batch_size, seq_length = input_ids.shape
# Input validation
if seq_length > self.config.max_position_embeddings:
raise ValueError(f"Input sequence length {seq_length} exceeds maximum position embeddings {self.config.max_position_embeddings}")
# Get embeddings
hidden_states = self.embed_tokens(input_ids)
# Get position embeddings
cos, sin = self.rotary_emb(hidden_states, seq_length)
# Generate attention mask if none provided
if attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length),
dtype=torch.bool,
device=device
)
else:
# Convert to boolean if it's not already and ensure contiguous memory
attention_mask = attention_mask.bool().contiguous()
# Create causal mask
causal_mask = torch.triu(
torch.ones((seq_length, seq_length), device=device),
diagonal=1
).bool()
# Create attention mask [batch_size, 1, seq_length, seq_length]
attention_mask = attention_mask.view(batch_size, 1, 1, seq_length)
attention_mask = attention_mask.expand(batch_size, 1, seq_length, seq_length)
# Prepare causal mask
causal_mask = causal_mask.view(1, 1, seq_length, seq_length)
# Combine masks
mask = attention_mask & ~causal_mask
# Convert boolean mask to float mask
mask = mask.to(dtype=hidden_states.dtype)
mask = (1.0 - mask) * torch.finfo(hidden_states.dtype).min
# Apply transformer layers
for layer in self.layers:
hidden_states = layer(hidden_states, cos, sin, mask)
# Apply final normalization
hidden_states = self.norm(hidden_states)
# Project back to vocabulary
logits = F.linear(hidden_states, self.embed_tokens.weight)
return logits
except Exception as e:
print(f"\nForward pass error:")
print(f"Input shape: {input_ids.shape}")
print(f"Device: {input_ids.device}")
print(f"CUDA memory allocated: {torch.cuda.memory_allocated() / 1e9:.2f} GB")
print(f"Error: {str(e)}")
raise
def generate(
self,
input_ids,
attention_mask=None,
max_length=100,
temperature=0.7,
top_p=0.9,
top_k=50,
num_return_sequences=1,
do_sample=True,
pad_token_id=None,
bos_token_id=None,
eos_token_id=None
):
try:
batch_size = input_ids.shape[0]
current_length = input_ids.shape[1]
device = input_ids.device
# Input validation
if current_length >= self.config.max_position_embeddings:
raise ValueError(f"Input sequence length {current_length} exceeds maximum position embeddings {self.config.max_position_embeddings}")
# Ensure we don't exceed maximum position embeddings
max_length = min(max_length, self.config.max_position_embeddings)
# Initialize attention mask if None
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool, device=device)
for _ in range(max_length - current_length):
# Forward pass
outputs = self(input_ids, attention_mask)
next_token_logits = outputs[:, -1, :] / temperature
# Apply top-k filtering
if top_k > 0:
indices_to_remove = next_token_logits < torch.topk(next_token_logits, top_k)[0][..., -1, None]
next_token_logits[indices_to_remove] = float('-inf')
# Apply top-p filtering
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
next_token_logits[indices_to_remove] = float('-inf')
# Sample from the filtered distribution
if do_sample:
probs = F.softmax(next_token_logits, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
else:
next_tokens = torch.argmax(next_token_logits, dim=-1)
# Append new tokens
input_ids = torch.cat([input_ids, next_tokens.unsqueeze(-1)], dim=-1)
attention_mask = torch.cat([attention_mask, torch.ones_like(next_tokens.unsqueeze(-1))], dim=-1)
# Stop if we've hit special tokens
if (pad_token_id is not None and (next_tokens == pad_token_id).all()) or \
(eos_token_id is not None and (next_tokens == eos_token_id).all()):
break
return input_ids
except Exception as e:
print(f"\nGeneration error:")
print(f"Input shape: {input_ids.shape}")
print(f"Device: {input_ids.device}")
print(f"Error: {str(e)}")
raise
class TextDataset(Dataset):
def __init__(self, config, split="train"):
self.config = config
# Load dataset from HuggingFace
full_dataset = load_dataset(
config.data.datasets[0].path,
config.data.datasets[0].subset,
split=split
)
# Apply split ratio if less than 1
if config.data.datasets[0].split_ratio < 1.0:
num_samples = int(len(full_dataset) * config.data.datasets[0].split_ratio)
self.dataset = full_dataset.select(range(num_samples))
else:
self.dataset = full_dataset
# Initialize tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(config.model.tokenizer_name)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
# Get text from dataset
text = self.dataset[idx]["text"]
# Tokenize
encodings = self.tokenizer(
text,
truncation=True,
max_length=self.config.model.max_position_embeddings,
padding="max_length",
return_tensors="pt"
)
return {
"input_ids": encodings.input_ids.squeeze(),
"attention_mask": encodings.attention_mask.squeeze(),
"labels": encodings.input_ids.squeeze()
}
class SmolLM2Lightning(pl.LightningModule):
def __init__(self, config):
super().__init__()
self.save_hyperparameters()
self.config = config
# Initialize tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(config.model.tokenizer_name)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
# Initialize the base model
self.model = SmolLM2(config.model)
def forward(self, input_ids, attention_mask=None):
return self.model(input_ids, attention_mask)
def training_step(self, batch, batch_idx):
try:
input_ids = batch["input_ids"]
labels = batch["labels"]
attention_mask = batch.get("attention_mask", None)
# Ensure tensors are contiguous and on the correct device
inputs = input_ids[..., :-1].contiguous()
labels = input_ids[..., 1:].contiguous()
if attention_mask is not None:
attention_mask = attention_mask[..., :-1].contiguous()
# Forward pass
logits = self(inputs, attention_mask)
# Calculate loss
loss = F.cross_entropy(
logits.view(-1, self.config.model.vocab_size),
labels.view(-1),
ignore_index=self.config.model.pad_token_id if self.config.model.pad_token_id is not None else -100,
reduction='mean'
)
# Detach loss for logging
loss_value = loss.detach().float()
# Log metrics
self.log('train_loss', loss_value, prog_bar=True, on_step=True, sync_dist=True)
return loss
except Exception as e:
print(f"\nTraining step error:")
print(f"Input shape: {input_ids.shape if input_ids is not None else 'None'}")
print(f"Device: {input_ids.device if input_ids is not None else 'None'}")
print(f"Error: {str(e)}")
raise
def validation_step(self, batch, batch_idx):
try:
input_ids = batch["input_ids"]
labels = batch["labels"]
attention_mask = batch.get("attention_mask", None)
# Ensure tensors are contiguous and on the correct device
inputs = input_ids[..., :-1].contiguous()
labels = input_ids[..., 1:].contiguous()
if attention_mask is not None:
attention_mask = attention_mask[..., :-1].contiguous()
# Forward pass
logits = self(inputs, attention_mask)
# Calculate loss
loss = F.cross_entropy(
logits.view(-1, self.config.model.vocab_size),
labels.view(-1),
ignore_index=self.config.model.pad_token_id if self.config.model.pad_token_id is not None else -100,
reduction='mean'
)
# Detach loss for logging
loss_value = loss.detach().float()
# Log metrics
self.log('val_loss', loss_value, prog_bar=True, on_epoch=True, sync_dist=True)
return loss
except Exception as e:
print(f"\nValidation step error:")
print(f"Input shape: {input_ids.shape if input_ids is not None else 'None'}")
print(f"Device: {input_ids.device if input_ids is not None else 'None'}")
print(f"Error: {str(e)}")
raise
def configure_optimizers(self):
# Create optimizer with explicit type conversion
optimizer = AdamW(
self.parameters(),
lr=float(self.config.scheduler.learning_rate),
weight_decay=float(self.config.optimizer.weight_decay),
betas=(float(self.config.optimizer.adam_beta1),
float(self.config.optimizer.adam_beta2)),
eps=float(self.config.optimizer.adam_eps),
)
# Create scheduler
scheduler = OneCycleLR(
optimizer,
max_lr=float(self.config.scheduler.max_lr),
total_steps=int(self.config.training.max_steps),
pct_start=float(self.config.scheduler.pct_start),
anneal_strategy=self.config.scheduler.anneal_strategy,
cycle_momentum=bool(self.config.scheduler.cycle_momentum),
div_factor=float(self.config.scheduler.div_factor),
final_div_factor=float(self.config.scheduler.final_div_factor),
)
return {
"optimizer": optimizer,
"lr_scheduler": {
"scheduler": scheduler,
"interval": "step",
"frequency": 1
}
}
def generate(self, *args, **kwargs):
return self.model.generate(*args, **kwargs)
def train_dataloader(self):
dataset = TextDataset(self.config, split="train")
return DataLoader(
dataset,
batch_size=self.config.training.batch_size,
shuffle=True,
num_workers=self.config.data.loading.num_workers,
pin_memory=self.config.data.loading.pin_memory,
persistent_workers=True,
prefetch_factor=self.config.data.loading.prefetch_factor,
drop_last=True # Drop incomplete batches
)
def val_dataloader(self):
dataset = TextDataset(self.config, split="validation")
return DataLoader(
dataset,
batch_size=self.config.training.batch_size,
shuffle=False,
num_workers=self.config.data.loading.num_workers,
pin_memory=self.config.data.loading.pin_memory,
persistent_workers=True,
prefetch_factor=self.config.data.loading.prefetch_factor
) |