import pytorch_lightning as pl import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import OneCycleLR from transformers import AutoTokenizer import torch.nn as nn import math from torch.utils.data import DataLoader, Dataset from datasets import load_dataset import os def _init_weights(module, std=0.02): if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) class RMSNorm(nn.Module): def __init__(self, dim, eps=1e-5): super().__init__() self.eps = float(eps) # Ensure eps is a float self.weight = nn.Parameter(torch.ones(dim)) def forward(self, x): norm = torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) return x * norm * self.weight class RotaryEmbedding(nn.Module): def __init__(self, dim, max_position_embeddings=2048, base=10000): super().__init__() self.dim = dim self.max_position_embeddings = int(max_position_embeddings) # Convert to int self.base = base inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer("inv_freq", inv_freq) t = torch.arange(self.max_position_embeddings).type_as(self.inv_freq) freqs = torch.einsum("i,j->ij", t, self.inv_freq) emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos()[None, None, :, :]) self.register_buffer("sin_cached", emb.sin()[None, None, :, :]) def forward(self, x, seq_len=None): # Convert seq_len to int and ensure it's a valid value seq_len = int(seq_len) if seq_len is not None else x.size(1) if seq_len > self.max_position_embeddings: seq_len = self.max_position_embeddings return ( self.cos_cached[:,:,:seq_len,:], self.sin_cached[:,:,:seq_len,:] ) def rotate_half(x): """Rotates half the hidden dims of the input.""" x1, x2 = x.chunk(2, dim=-1) return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin): # Ensure proper broadcasting cos = cos[:, :, :q.size(2), :] # [batch, 1, seq_len, dim] sin = sin[:, :, :q.size(2), :] # [batch, 1, seq_len, dim] q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class Attention(nn.Module): def __init__(self, config): super().__init__() self.hidden_size = config.hidden_size self.num_attention_heads = config.num_attention_heads self.num_key_value_heads = config.num_key_value_heads self.head_dim = self.hidden_size // self.num_attention_heads self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) def forward(self, hidden_states, cos, sin, attention_mask=None): batch_size, seq_length, _ = hidden_states.shape q = self.q_proj(hidden_states) k = self.k_proj(hidden_states) v = self.v_proj(hidden_states) # Reshape for attention computation q = q.view(batch_size, seq_length, self.num_attention_heads, self.head_dim) k = k.view(batch_size, seq_length, self.num_key_value_heads, self.head_dim) v = v.view(batch_size, seq_length, self.num_key_value_heads, self.head_dim) # Transpose for attention computation q = q.transpose(1, 2) # [batch, num_heads, seq_len, head_dim] k = k.transpose(1, 2) # [batch, num_kv_heads, seq_len, head_dim] v = v.transpose(1, 2) # [batch, num_kv_heads, seq_len, head_dim] # Apply rotary embeddings q, k = apply_rotary_pos_emb(q, k, cos, sin) # Repeat k/v heads if num_key_value_heads < num_attention_heads if self.num_key_value_heads != self.num_attention_heads: k = k.repeat_interleave(self.num_attention_heads // self.num_key_value_heads, dim=1) v = v.repeat_interleave(self.num_attention_heads // self.num_key_value_heads, dim=1) # Compute attention attn_weights = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim) if attention_mask is not None: attn_weights = attn_weights + attention_mask attn_weights = F.softmax(attn_weights, dim=-1) # Compute output output = torch.matmul(attn_weights, v) output = output.transpose(1, 2).contiguous() # [batch, seq_len, num_heads, head_dim] output = output.view(batch_size, seq_length, -1) return self.o_proj(output) class MLP(nn.Module): def __init__(self, config): super().__init__() self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) self.act_fn = nn.SiLU() def forward(self, x): return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) class DecoderLayer(nn.Module): def __init__(self, config): super().__init__() self.self_attn = Attention(config) self.mlp = MLP(config) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward(self, hidden_states, cos, sin, attention_mask=None): # Self attention residual = hidden_states hidden_states = self.input_layernorm(hidden_states) hidden_states = self.self_attn(hidden_states, cos, sin, attention_mask) hidden_states = residual + hidden_states # MLP residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states return hidden_states class SmolLM2(nn.Module): def __init__(self, config): super().__init__() self.config = config # Token embeddings self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) # Initialize transformer layers self.layers = nn.ModuleList([ DecoderLayer(config) for _ in range(config.num_hidden_layers) ]) # Final layer norm self.norm = RMSNorm(config.hidden_size, eps=float(config.rms_norm_eps)) # Initialize rotary embeddings self.rotary_emb = RotaryEmbedding( config.hidden_size // config.num_attention_heads, max_position_embeddings=config.max_position_embeddings ) # Initialize weights self.apply(lambda p: _init_weights(p, std=config.initializer_range)) def forward(self, input_ids, attention_mask=None): try: # Ensure inputs are on the correct device device = input_ids.device batch_size, seq_length = input_ids.shape # Input validation if seq_length > self.config.max_position_embeddings: raise ValueError(f"Input sequence length {seq_length} exceeds maximum position embeddings {self.config.max_position_embeddings}") # Get embeddings hidden_states = self.embed_tokens(input_ids) # Get position embeddings cos, sin = self.rotary_emb(hidden_states, seq_length) # Generate attention mask if none provided if attention_mask is None: attention_mask = torch.ones( (batch_size, seq_length), dtype=torch.bool, device=device ) else: # Convert to boolean if it's not already and ensure contiguous memory attention_mask = attention_mask.bool().contiguous() # Create causal mask causal_mask = torch.triu( torch.ones((seq_length, seq_length), device=device), diagonal=1 ).bool() # Create attention mask [batch_size, 1, seq_length, seq_length] attention_mask = attention_mask.view(batch_size, 1, 1, seq_length) attention_mask = attention_mask.expand(batch_size, 1, seq_length, seq_length) # Prepare causal mask causal_mask = causal_mask.view(1, 1, seq_length, seq_length) # Combine masks mask = attention_mask & ~causal_mask # Convert boolean mask to float mask mask = mask.to(dtype=hidden_states.dtype) mask = (1.0 - mask) * torch.finfo(hidden_states.dtype).min # Apply transformer layers for layer in self.layers: hidden_states = layer(hidden_states, cos, sin, mask) # Apply final normalization hidden_states = self.norm(hidden_states) # Project back to vocabulary logits = F.linear(hidden_states, self.embed_tokens.weight) return logits except Exception as e: print(f"\nForward pass error:") print(f"Input shape: {input_ids.shape}") print(f"Device: {input_ids.device}") print(f"CUDA memory allocated: {torch.cuda.memory_allocated() / 1e9:.2f} GB") print(f"Error: {str(e)}") raise def generate( self, input_ids, attention_mask=None, max_length=100, temperature=0.7, top_p=0.9, top_k=50, num_return_sequences=1, do_sample=True, pad_token_id=None, bos_token_id=None, eos_token_id=None ): try: batch_size = input_ids.shape[0] current_length = input_ids.shape[1] device = input_ids.device # Input validation if current_length >= self.config.max_position_embeddings: raise ValueError(f"Input sequence length {current_length} exceeds maximum position embeddings {self.config.max_position_embeddings}") # Ensure we don't exceed maximum position embeddings max_length = min(max_length, self.config.max_position_embeddings) # Initialize attention mask if None if attention_mask is None: attention_mask = torch.ones_like(input_ids, dtype=torch.bool, device=device) for _ in range(max_length - current_length): # Forward pass outputs = self(input_ids, attention_mask) next_token_logits = outputs[:, -1, :] / temperature # Apply top-k filtering if top_k > 0: indices_to_remove = next_token_logits < torch.topk(next_token_logits, top_k)[0][..., -1, None] next_token_logits[indices_to_remove] = float('-inf') # Apply top-p filtering if top_p < 1.0: sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cumulative_probs > top_p sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove) next_token_logits[indices_to_remove] = float('-inf') # Sample from the filtered distribution if do_sample: probs = F.softmax(next_token_logits, dim=-1) next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) else: next_tokens = torch.argmax(next_token_logits, dim=-1) # Append new tokens input_ids = torch.cat([input_ids, next_tokens.unsqueeze(-1)], dim=-1) attention_mask = torch.cat([attention_mask, torch.ones_like(next_tokens.unsqueeze(-1))], dim=-1) # Stop if we've hit special tokens if (pad_token_id is not None and (next_tokens == pad_token_id).all()) or \ (eos_token_id is not None and (next_tokens == eos_token_id).all()): break return input_ids except Exception as e: print(f"\nGeneration error:") print(f"Input shape: {input_ids.shape}") print(f"Device: {input_ids.device}") print(f"Error: {str(e)}") raise class TextDataset(Dataset): def __init__(self, config, split="train"): self.config = config # Load dataset from HuggingFace full_dataset = load_dataset( config.data.datasets[0].path, config.data.datasets[0].subset, split=split ) # Apply split ratio if less than 1 if config.data.datasets[0].split_ratio < 1.0: num_samples = int(len(full_dataset) * config.data.datasets[0].split_ratio) self.dataset = full_dataset.select(range(num_samples)) else: self.dataset = full_dataset # Initialize tokenizer self.tokenizer = AutoTokenizer.from_pretrained(config.model.tokenizer_name) if self.tokenizer.pad_token is None: self.tokenizer.pad_token = self.tokenizer.eos_token def __len__(self): return len(self.dataset) def __getitem__(self, idx): # Get text from dataset text = self.dataset[idx]["text"] # Tokenize encodings = self.tokenizer( text, truncation=True, max_length=self.config.model.max_position_embeddings, padding="max_length", return_tensors="pt" ) return { "input_ids": encodings.input_ids.squeeze(), "attention_mask": encodings.attention_mask.squeeze(), "labels": encodings.input_ids.squeeze() } class SmolLM2Lightning(pl.LightningModule): def __init__(self, config): super().__init__() self.save_hyperparameters() self.config = config # Initialize tokenizer self.tokenizer = AutoTokenizer.from_pretrained(config.model.tokenizer_name) if self.tokenizer.pad_token is None: self.tokenizer.pad_token = self.tokenizer.eos_token # Initialize the base model self.model = SmolLM2(config.model) def forward(self, input_ids, attention_mask=None): return self.model(input_ids, attention_mask) def training_step(self, batch, batch_idx): try: input_ids = batch["input_ids"] labels = batch["labels"] attention_mask = batch.get("attention_mask", None) # Ensure tensors are contiguous and on the correct device inputs = input_ids[..., :-1].contiguous() labels = input_ids[..., 1:].contiguous() if attention_mask is not None: attention_mask = attention_mask[..., :-1].contiguous() # Forward pass logits = self(inputs, attention_mask) # Calculate loss loss = F.cross_entropy( logits.view(-1, self.config.model.vocab_size), labels.view(-1), ignore_index=self.config.model.pad_token_id if self.config.model.pad_token_id is not None else -100, reduction='mean' ) # Detach loss for logging loss_value = loss.detach().float() # Log metrics self.log('train_loss', loss_value, prog_bar=True, on_step=True, sync_dist=True) return loss except Exception as e: print(f"\nTraining step error:") print(f"Input shape: {input_ids.shape if input_ids is not None else 'None'}") print(f"Device: {input_ids.device if input_ids is not None else 'None'}") print(f"Error: {str(e)}") raise def validation_step(self, batch, batch_idx): try: input_ids = batch["input_ids"] labels = batch["labels"] attention_mask = batch.get("attention_mask", None) # Ensure tensors are contiguous and on the correct device inputs = input_ids[..., :-1].contiguous() labels = input_ids[..., 1:].contiguous() if attention_mask is not None: attention_mask = attention_mask[..., :-1].contiguous() # Forward pass logits = self(inputs, attention_mask) # Calculate loss loss = F.cross_entropy( logits.view(-1, self.config.model.vocab_size), labels.view(-1), ignore_index=self.config.model.pad_token_id if self.config.model.pad_token_id is not None else -100, reduction='mean' ) # Detach loss for logging loss_value = loss.detach().float() # Log metrics self.log('val_loss', loss_value, prog_bar=True, on_epoch=True, sync_dist=True) return loss except Exception as e: print(f"\nValidation step error:") print(f"Input shape: {input_ids.shape if input_ids is not None else 'None'}") print(f"Device: {input_ids.device if input_ids is not None else 'None'}") print(f"Error: {str(e)}") raise def configure_optimizers(self): # Create optimizer with explicit type conversion optimizer = AdamW( self.parameters(), lr=float(self.config.scheduler.learning_rate), weight_decay=float(self.config.optimizer.weight_decay), betas=(float(self.config.optimizer.adam_beta1), float(self.config.optimizer.adam_beta2)), eps=float(self.config.optimizer.adam_eps), ) # Create scheduler scheduler = OneCycleLR( optimizer, max_lr=float(self.config.scheduler.max_lr), total_steps=int(self.config.training.max_steps), pct_start=float(self.config.scheduler.pct_start), anneal_strategy=self.config.scheduler.anneal_strategy, cycle_momentum=bool(self.config.scheduler.cycle_momentum), div_factor=float(self.config.scheduler.div_factor), final_div_factor=float(self.config.scheduler.final_div_factor), ) return { "optimizer": optimizer, "lr_scheduler": { "scheduler": scheduler, "interval": "step", "frequency": 1 } } def generate(self, *args, **kwargs): return self.model.generate(*args, **kwargs) def train_dataloader(self): dataset = TextDataset(self.config, split="train") return DataLoader( dataset, batch_size=self.config.training.batch_size, shuffle=True, num_workers=self.config.data.loading.num_workers, pin_memory=self.config.data.loading.pin_memory, persistent_workers=True, prefetch_factor=self.config.data.loading.prefetch_factor, drop_last=True # Drop incomplete batches ) def val_dataloader(self): dataset = TextDataset(self.config, split="validation") return DataLoader( dataset, batch_size=self.config.training.batch_size, shuffle=False, num_workers=self.config.data.loading.num_workers, pin_memory=self.config.data.loading.pin_memory, persistent_workers=True, prefetch_factor=self.config.data.loading.prefetch_factor )