File size: 21,190 Bytes
6c5d77f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
# Setup of a Correlation Lower Panel in Scatterplot Matrix
myPanel.hist <- function(x, ...){
usr <- par("usr"); on.exit(par(usr))
# Para definir región de graficiación
par(usr = c(usr[1:2], 0, 1.5) )
# Para obtener una lista que guarde las marcas de clase y conteos en cada una:
h <- hist(x, plot = FALSE)
breaks <- h$breaks;
nB <- length(breaks)
y <- h$counts; y <- y/max(y)
# Para dibujar los histogramas
rect(breaks[-nB], 0, breaks[-1], y, col="cyan", ...)
}
# Setup of a Boxplot Diagonal Panel in Scatterplot Matrix
myPanel.box <- function(x, ...){
usr <- par("usr", bty = 'n')
on.exit(par(usr))
par(usr = c(-1, 1, min(x) - 0.5, max(x) + 0.5))
b <- boxplot(x, plot = F)
whisker.i <- b$stats[1,]
whisker.s <- b$stats[5,]
hinge.i <- b$stats[2,]
mediana <- b$stats[3,]
hinge.s <- b$stats[4,]
rect(-0.5, hinge.i, 0.5, mediana, col = 'gray')
segments(0, hinge.i, 0, whisker.i, lty = 2)
segments(-0.1, whisker.i, 0.1, whisker.i)
rect(-0.5, mediana, 0.5, hinge.s, col = 'gray')
segments(0, hinge.s, 0, whisker.s, lty = 2)
segments(-0.1, whisker.s, 0.1, whisker.s)
}
# Setup of a Correlation Lower Panel in Scatterplot Matrix
myPanel.cor <- function(x, y, digits = 2, prefix = "", cex.cor){
usr <- par("usr"); on.exit(par(usr = usr))
par(usr = c(0, 1, 0, 1))
r <- cor(x, y)
txt <- format(c(r, 0.123456789), digits = digits)[1]
txt <- paste(prefix, txt, sep = "")
if(missing(cex.cor))
cex = 0.4/strwidth(txt)
text(0.5, 0.5, txt, cex = 1 + 1.5*abs(r))
}
# Ordinary or Studentized residuals QQ-plot with Shapiro-Wilk normal test results
myQQnorm <- function(modelo, student = F, ...){
if(student){
res <- rstandard(modelo)
lab.plot <- "Normal Q-Q Plot of Studentized Residuals"
} else {
res <- residuals(modelo)
lab.plot <- "Normal Q-Q Plot of Residuals"
}
shapiro <- shapiro.test(res)
shapvalue <- ifelse(shapiro$p.value < 0.001, "P value < 0.001", paste("P value = ", round(shapiro$p.value, 4), sep = ""))
shapstat <- paste("W = ", round(shapiro$statistic, 4), sep = "")
q <- qqnorm(res, plot.it = FALSE)
qqnorm(res, main = lab.plot, ...)
qqline(res, lty = 2, col = 2)
text(min(q$x, na.rm = TRUE), max(q$y, na.rm = TRUE)*0.95, pos = 4, 'Shapiro-Wilk Test', col = "blue", font = 2)
text(min(q$x, na.rm = TRUE), max(q$y, na.rm = TRUE)*0.80, pos = 4, shapstat, col = "blue", font = 3)
text(min(q$x, na.rm = TRUE), max(q$y, na.rm = TRUE)*0.65, pos = 4, shapvalue, col = "blue", font = 3)
}
# Table of Summary Statistics
mySumStats <- function(lm.model){
stats <- summary(lm.model)
RMSE <- stats$sigma
R2 <- stats$r.squared
adjR2 <- stats$adj.r.squared
result <- data.frame(Root_MSE = RMSE, R_square = R2, Adj_R_square = adjR2, row.names = "")
format(result, digits = 6)
}
# Extract estimated and standardized coefficients, their 95% CI's and VIF's
myCoefficients <- function(lm.model, dataset){
coeff <- coef(lm.model)
scaled.data <- as.data.frame(scale(dataset))
coef.std <- c(0, coef(lm(update(formula(lm.model), ~.+0), scaled.data)))
limites <- confint(lm.model, level = 0.95)
vifs <- c(0, vif(lm.model))
result <- data.frame(Estimation = coeff, Coef.Std = coef.std, Limits = limites, Vif = vifs)
names(result)[3:4] <- c("Limit_2.5%","Limit_97.5%")
cat("Estimated and standardized coefficients, their 95% CI's and VIF's", "\n")
result
}
# Analysis of Variance Table
myAnova <- function(lm.model){
SSq <- unlist(anova(lm.model)["Sum Sq"])
k <- length(SSq) - 1
SSR <- sum(SSq[1:k])
SSE <- SSq[(k + 1)]
MSR <- SSR/k
df.error <- unlist(anova(lm.model)["Df"])[k + 1]
MSE <- SSE/df.error
F0 <- MSR/MSE
PV <- pf(F0, k, df.error, lower.tail = F)
result<-data.frame(Sum_of_Squares = format(c(SSR, SSE), digits = 6), DF = format(c(k, df.error), digits = 6),
Mean_Square = format(c(MSR, MSE), digits = 6), F_Value = c(format(F0, digits = 6), ''),
P_value = c(format(PV, digits = 6), ''), row.names = c("Model", "Error"))
result
}
# Diagnostics table for Leverage and Influence observations
myInfluence <- function(model, infl = influence(model), covr = F){
is.influential <- function(infmat, n, covr = F){
d <- dim(infmat)
colrm <- if(covr) 4L else 3L
k <- d[[length(d)]] - colrm
if (n <= k)
stop("too few cases i with h_ii > 0), n < k")
absmat <- abs(infmat)
r <- if(!covr){
if(is.matrix(infmat)){
cbind(absmat[, 1L:k] > 2/sqrt(n), # > 1,
absmat[, k + 1] > 2 * sqrt(k/n), # > 3 * sqrt(k/(n - k)),
infmat[, k + 2] > 1, # pf(infmat[, k + 3], k, n - k) > 0.5,
infmat[, k + 3] > 2 * p / n) # infmat[, k + 4] > (3 * k)/n)
} else {
c(absmat[, 1L:k] > 2/sqrt(n), # > 1,
absmat[, k + 1] > 2 * sqrt(k/n), # > 3 * sqrt(k/(n - k)),
infmat[, k + 3] > 1, # pf(infmat[, , k + 3], k, n - k) > 0.5,
infmat[, k + 4] > 2 * p / n) # > (3 * k)/n)
}
} else {
if(is.matrix(infmat)){
cbind(absmat[, 1L:k] > 2/sqrt(n), # > 1,
absmat[, k + 1] > 2 * sqrt(k/n), # > 3 * sqrt(k/(n - k)),
abs(1 - infmat[, k + 2]) > 3 * p / n, # > (3 * k)/(n - k),
infmat[, k + 3] > 1, # pf(infmat[, k + 3], k, n - k) > 0.5,
infmat[, k + 4] > 2 * p / n) # infmat[, k + 4] > (3 * k)/n)
} else {
c(absmat[, 1L:k] > 2/sqrt(n), # > 1,
absmat[, k + 1] > 2 * sqrt(k/n), # > 3 * sqrt(k/(n - k)),
abs(1 - infmat[, , k + 2]) > 3 * p / n, # > (3 * k)/(n - k),
infmat[, k + 3] > 1, # pf(infmat[, , k + 3], k, n - k) > 0.5,
infmat[, k + 4] > 2 * p / n) # > (3 * k)/n)
}
}
attributes(r) <- attributes(infmat)
r
}
p <- model$rank
e <- weighted.residuals(model)
s <- sqrt(sum(e^2, na.rm = TRUE)/df.residual(model))
mqr <- stats:::qr.lm(model)
xxi <- chol2inv(mqr$qr, mqr$rank)
si <- infl$sigma
h <- infl$hat
is.mlm <- is.matrix(e)
cf <- if (is.mlm){
aperm(infl$coefficients, c(1L, 3:2))
} else infl$coefficients
dfbetas <- cf/outer(infl$sigma, sqrt(diag(xxi)))
vn <- variable.names(model)
vn[vn == "(Intercept)"] <- "1_"
dimnames(dfbetas)[[length(dim(dfbetas))]] <- paste0("dfb.", abbreviate(vn))
dffits <- e * sqrt(h)/(si * (1 - h))
if(any(ii <- is.infinite(dffits))) dffits[ii] <- NaN
if(covr) cov.ratio <- (si/s)^(2 * p)/(1 - h)
cooks.d <- if (inherits(model, "glm")){
(infl$pear.res/(1 - h))^2 * h/(summary(model)$dispersion * p)
} else ((e/(s * (1 - h)))^2 * h)/p
infmat <- if(is.mlm){
dns <- dimnames(dfbetas)
dns[[3]] <- c(dns[[3]], "dffit", "cov.r",
"cook.d", "hat")
a <- array(dfbetas, dim = dim(dfbetas) + c(0, 0, 3 + 1), dimnames = dns)
a[, , "dffit"] <- dffits
if(covr) a[, , "cov.r"] <- cov.ratio
a[, , "cook.d"] <- cooks.d
a[, , "hat"] <- h
a
} else {
if(covr){
cbind(dfbetas, dffit = dffits, cov.r = cov.ratio, cook.d = cooks.d, hat = h)
} else cbind(dfbetas, dffit = dffits, cook.d = cooks.d, hat = h)
}
infmat[is.infinite(infmat)] <- NaN
is.inf <- is.influential(infmat, sum(h > 0))
ans <- list(infmat = infmat, is.inf = is.inf, call = model$call)
class(ans) <- "infl"
ans
}
# Extract Collinearity Diagnostics
myCollinDiag <- function(lm.model, center = F){
if(center == F){
X <- model.matrix(lm.model)
eigen <- prcomp(X, center = FALSE, scale = TRUE)$sdev^2
cond.idx <- colldiag(lm.model)
cond.idx$pi <- round(cond.idx$pi, 6)
result <- data.frame(Eigen_Value = format(eigen, digits = 5),
Condition_Index = cond.idx$condindx,
cond.idx$pi)
names(result)[2:3] <- c('Condition_Index','Intercept')
cat("Collinearity Diagnostics", "\n",
paste0(rep("", 3+sum(nchar(names(result)[1:2])))), "Variance Decomposition Proportions", "\n")
}
else{
X <- model.matrix(lm.model)[, -1]
eigen <- prcomp(X, center = TRUE, scale = TRUE)$sdev^2
cond.idx <- colldiag(lm.model, center = TRUE, scale = TRUE)
cond.idx$pi <- round(cond.idx$pi, 6)
result <- data.frame(Eigen_Value = format(eigen, digits = 5),
Condition_Index = cond.idx$condindx,
cond.idx$pi)
names(result)[2] <- 'Condition_Index'
cat("Collinearity Diagnostics (intercept adjusted)", "\n",
paste0(rep("", 3+sum(nchar(names(result)[1:2])))), "Variance Decomposition Proportions", "\n")
}
result
}
# All Posible Regressions Table
myAllRegTable <- function(lm.model, response = model.response(model.frame(lm.model)), MSE = F){
regTable <- summary(regsubsets(model.matrix(lm.model)[, -1], response,
nbest = 2^(lm.model$rank - 1) - 1, really.big = T))
pvCount <- as.vector(apply(regTable$which[, -1], 1, sum))
pvIDs <- apply(regTable$which[, -1], 1, function(x) as.character(paste(colnames(model.matrix(lm.model)[, -1])[x],
collapse = " ")))
result <- if(MSE){
data.frame(k = pvCount, R_sq = round(regTable$rsq, 3), adj_R_sq = round(regTable$adjr2, 3),
MSE = round(regTable$rss/(nrow(model.matrix(lm.model)[,-1]) - (pvCount + 1)), 3),
Cp = round(regTable$cp, 3), Variables_in_model = pvIDs)
} else {
data.frame(k = pvCount, R_sq = round(regTable$rsq, 3), adj_R_sq = round(regTable$adjr2, 3),
SSE = round(regTable$rss, 3),
Cp = round(regTable$cp, 3), Variables_in_model = pvIDs)
}
format(result, digits = 6)
}
# Summary table and Plots of the Best of All Posible Models by Criterion
# Cp Criterion
myCp_criterion <- function(lm.model, response = model.response(model.frame(lm.model))){
Cp <- leaps(model.matrix(lm.model)[, -1], response, method = "Cp", nbest = 1) # The Best model by number of parameters
var_in_model <- apply(Cp$which, 1,
function(x) as.character(paste(colnames(model.matrix(lm.model)[, -1])[x], collapse = " ")))
Cp_result <- data.frame(k = Cp$size - 1, p = Cp$size, Cp = Cp$Cp, Variables.in.model = var_in_model)
plot(Cp$size, Cp$Cp, type = "b", xlab = "p", ylab = '', xaxt = "n", cex = 2, ylim = c(0, max(Cp$Cp)), las = 1)
axis(1, at = Cp$size, labels = Cp$size)
mtext('Cp', 2, las = 1, adj = 3)
abline(a = 0, b = 1, lty = 2, col = 2)
cat("Models are Indexed in rows", "\n")
print(Cp_result, row.names = F)
}
# R2 Criterion
myR2_criterion <- function(lm.model, response = model.response(model.frame(lm.model))){
R2 <- leaps(model.matrix(lm.model)[, -1], response, method = "r2", nbest = 1) #Mejor modelo para cada p
var_in_model <- apply(R2$which, 1,
function(x) as.character(paste(colnames(model.matrix(lm.model)[, -1])[x], collapse = " ")))
R2_result <- data.frame(k = R2$size - 1, p = R2$size, R2 = R2$r2, Variables.in.model = var_in_model)
plot(R2$size, R2$r2, type = "b", xlab = "p", ylab = "", xaxt = "n", cex = 2, las = 1)
axis(1, at = R2$size, labels = R2$size)
mtext("R2", 2, las = 1, adj = 4)
cat("Models are Indexed in rows", "\n")
print(R2_result, row.names = F)
}
# adjR2 Criterion
myAdj_R2_criterion <- function(lm.model, response = model.response(model.frame(lm.model))){
adjR2 <- leaps(model.matrix(lm.model)[, -1], response, method = "adjr2", nbest = 1)
var_in_model <- apply(adjR2$which, 1,
function(x) as.character(paste(colnames(model.matrix(lm.model)[, -1])[x], collapse = " ")))
adjR2_result <- data.frame(k = adjR2$size - 1, p = adjR2$size, adjR2 = adjR2$adjr2, Variables.in.model = var_in_model)
plot(adjR2$size, adjR2$adjr2, type = "b", xlab = "p", ylab = "", xaxt = "n", cex = 2, las = 1)
axis(1, at = adjR2$size, labels = adjR2$size)
mtext("adj_R2", 2, las = 1, adj = 2.2)
cat("Models are Indexed in rows", "\n")
print(adjR2_result, row.names = F)
}
myStepwise <- function(full.model, alpha.to.enter, alpha.to.leave, initial.model = lm(model.response(model.frame(full.model)) ~ 1)){
###################################################################################
# #
# Function to perform a stepwise linear regression using F tests of significance, #
# based on the function developed by Paul A. Rubin (rubin@msu.edu) #
# URL = https://orinanobworld.blogspot.com/2011/02/stepwise-regression-in-r.html #
# #
###################################################################################
# #
# full.model : model containing all possible terms #
# alpha.to.enter: significance level above which a variable may enter #
# alpha.to.leave: significance level below which a variable may be deleted #
# initial.model : first model to consider. By default the first model is the one #
# without predictors #
###################################################################################
#
# fit the full model
full <- lm(full.model);
# attach predictor variables in full model
attach(as.data.frame(model.matrix(full.model)[, -1]), warn.conflicts = F);
# MSE of full model
msef <- (summary(full)$sigma)^2;
# sample size
n <- length(full$residuals);
# this is the current model
current <- lm(initial.model);
# process each model until we break out of the loop
while(TRUE){
# summary output for the current model
temp <- summary(current);
# list of terms in the current model
rnames <- rownames(temp$coefficients);
# write the model description
print(temp$coefficients);
# current model's size
p <- dim(temp$coefficients)[1];
# MSE for current model
mse <- (temp$sigma)^2;
# Mallow's cp
cp <- (n - p)*mse / msef - (n - 2 * p);
# show the fit
fit <- sprintf("\nS = %f, R-sq = %f, R-sq(adj) = %f, C-p = %f",
temp$sigma, temp$r.squared, temp$adj.r.squared, cp);
write(fit, file = "");
# print a separator
write("=====", file = "");
# don't try to drop a term if only one is left
if(p > 1){
# looks for significance of terms based on F tests
d <- drop1(current, test = "F");
# maximum p-value of any term (have to skip the intercept to avoid an NA)
pmax <- max(d[-1, 6]);
# we have a candidate for deletion
if(pmax > alpha.to.leave){
# name of variable to delete
var <- rownames(d)[d[, 6] == pmax];
# if an intercept is present, it will be the first name in the list
if(length(var) > 1){
# there also could be ties for worst p-value, a safe solution to
# both issues is taking the second entry if there is more than one
var <- var[2];
}
# print out the variable to be dropped
write(paste("--- Dropping", var, "\n"), file="");
# current formula
f <- formula(current);
# modify the formula to drop the chosen variable (by subtracting it)
f <- as.formula(paste(f[2], "~", paste(f[3], var, sep=" - ")));
# fit the modified model
current <- lm(f);
# return to the top of the loop
next;
}
# if we get here, we failed to drop a term; try adding one
}
# note: add1 throws an error if nothing can be added (current == full), which
# we trap with tryCatch
# looks for significance of possible additions based on F tests
a <- tryCatch(add1(current, scope = full.model, test = "F"), error = function(e) NULL);
if(is.null(a)){
# there are no unused variables (or something went splat), so we bail out
break;
}
# minimum p-value of any term (skipping the intercept again)
pmin <- min(a[-1, 6]);
# we have a candidate for addition to the model
if(pmin < alpha.to.enter){
# name of variable to add
var <- rownames(a)[a[,6] == pmin];
# same issue with ties, intercept as above
if(length(var) > 1){
var <- var[2];
}
# print the variable being added
write(paste("+++ Adding", var, "\n"), file="");
# current formula
f <- formula(current);
# modify the formula to add the chosen variable
f <- as.formula(paste(f[2], "~", paste(f[3], var, sep=" + ")));
# fit the modified model
current <- lm(f);
# return to the top of the loop
next;
}
# if we get here, we failed to make any changes to the model; time to punt
break;
}
# detach predictor variables in full model
detach(as.data.frame(model.matrix(full.model)[,-1]));
current
}
myBackward <- function(base.full, alpha.to.leave = 0.05, verbose = T){
###################################################################################
# #
# Function to perform a backward linear regression using F tests of significance, #
# based on the function developed by Joris Meys #
# URL = https://codeday.me/es/qa/20190117/101609.html #
# #
###################################################################################
# #
# base.full : dataset(Y, X1...) #
# alpha.to.leave: the significance level below which a variable may be deleted #
# verbose : if TRUE, prints F-tests, dropped var and resulting model after #
# #
###################################################################################
#
has.interaction <- function(x, terms){
###############################################################################
# #
# Function has.interaction developed by Joris Meys, checks whether x is part #
# of a term in terms, which is a vector with names of terms from a model #
# #
###############################################################################
#
out <- sapply(terms, function(i){
sum(1 - (strsplit(x, ":")[[1]] %in% strsplit(i, ":")[[1]])) == 0
}
)
return(sum(out) > 0)
}
counter <- 1
# check input
#if(!is(model, "lm")) stop(paste(deparse(substitute(model)),"is not an lm object\n"))
# calculate scope for drop1 function
attach(base.full)
model <- lm(base.full)
terms <- attr(model$terms, "term.labels")
# set scopevars to all terms
scopevars <- terms
# Backward model selection:
while(TRUE){
# extract the test statistics from drop.
test <- drop1(model, scope = scopevars, test = "F")
if(verbose){
cat("-------------STEP ", counter, "-------------\n",
"The drop statistics : \n")
print(test)
}
pval <- test[, dim(test)[2]]
names(pval) <- rownames(test)
pval <- sort(pval, decreasing = T)
if(sum(is.na(pval)) > 0){
stop(paste("Model", deparse(substitute(model)), "is invalid. Check if all coefficients are estimated."))
}
# check if all significant
if(pval[1] < alpha.to.leave){
# stops the loop if all remaining vars are sign.
break
}
# select var to drop
i <- 1
while(TRUE){
dropvar <- names(pval)[i]
check.terms <- terms[-match(dropvar, terms)]
x <- has.interaction(dropvar, check.terms)
if(x){
i = i + 1
next
} else {
break
}
# end while(T) drop var
}
# stops the loop if var to remove is significant
if(pval[i] < alpha.to.leave){
break
}
if(verbose){
cat("\n--------\nTerm dropped in step", counter, ":", dropvar, "\n--------\n\n")
}
# update terms, scopevars and model
scopevars <- scopevars[-match(dropvar, scopevars)]
terms <- terms[-match(dropvar, terms)]
formul <- as.formula(paste(".~.-", dropvar))
model <- update(model, formul)
if(length(scopevars) == 0){
warning("All variables are thrown out of the model.\n", "No model could be specified.")
return()
}
counter <- counter + 1
# end while(T) main loop
}
detach(base.full)
return(model)
}
|