import streamlit as st from transformers import pipeline # Set up the Streamlit app layout and title st.title("CodeWise - AI-based Code Commenting Tool") st.subheader("Paste your code below, and the AI will generate comments explaining it!") # Create an input text area where users can paste their code code_input = st.text_area("Paste your code here:", height=300) # Slider to select the length of comments comment_length = st.slider("Select the comment length", min_value=50, max_value=300, value=150, step=10) # Create a button to generate the comments if st.button("Generate Comments"): if code_input.strip() == "": st.warning("Please paste some code before generating comments.") else: # Load a pre-trained model from Hugging Face for code summarization generator = pipeline("text2text-generation", model="Salesforce/codet5-base-multi-sum") # Generate comments using the model prompt = f"Comment this code:\n\n{code_input}" result = generator(prompt, max_length=comment_length, num_return_sequences=1) # Display the generated comments in the app st.subheader("Generated Comments:") st.code(result[0]['generated_text'], language='python') # Display a footer message st.write("Powered by [Hugging Face Transformers](https://huggingface.co/) and Streamlit.")