Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
2 |
+
from huggingface_hub import hf_hub_download
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
processor = AutoProcessor.from_pretrained("microsoft/git-base-vqav2")
|
6 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-vqav2")
|
7 |
+
|
8 |
+
file_path = hf_hub_download(repo_id="Multimodal-Fatima/OK-VQA_train", filename="data", repo_type="dataset")
|
9 |
+
image = Image.open(file_path).convert("RGB")
|
10 |
+
|
11 |
+
pixel_values = processor(images=image, return_tensors="pt").pixel_values
|
12 |
+
|
13 |
+
question = "How many people are there?"
|
14 |
+
|
15 |
+
input_ids = processor(text=question, add_special_tokens=False).input_ids
|
16 |
+
input_ids = [processor.tokenizer.cls_token_id] + input_ids
|
17 |
+
input_ids = torch.tensor(input_ids).unsqueeze(0)
|
18 |
+
|
19 |
+
generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50)
|
20 |
+
print(processor.batch_decode(generated_ids, skip_special_tokens=True))
|