import gradio as gr import torch from transformers import AutoProcessor, AutoModelForCausalLM from huggingface_hub import hf_hub_download from PIL import Image from datasets import load_dataset from torch.utils.data import DataLoader processor = AutoProcessor.from_pretrained("microsoft/git-base-vqav2") model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-vqav2") dataset=load_dataset("Multimodal-Fatima/OK-VQA_train") Dataset({ features:['image', 'answers','question'], num_rows: 200 }) {'image':Image(decode=True,id=None), 'answers':Sequence(feature=Value(dtype='int64',id=None),length=-1,id=None), 'question':Value(dtype='string',id=None)} Dataset({ features:['input_ids','attention_mask','pixel_values','pixel_mask','labels'], num_rows:200 }) file_path = hf_hub_download(repo_id=Dataset, repo_type="dataset") image = Image.open(file_path).convert("RGB") pixel_values = processor(images=image, return_tensors="pt").pixel_values input_ids = processor(text=question, add_special_tokens=False).input_ids input_ids = [processor.tokenizer.cls_token_id] + input_ids input_ids = torch.tensor(input_ids).unsqueeze(0) generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50) print(processor.batch_decode(generated_ids, skip_special_tokens=True))