Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,55 @@
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
return blur
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
interface = gr.Interface(
|
9 |
fn = process_image,
|
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from keras.preprocessing.image import img_to_array
|
5 |
+
from keras.models import model_from_json
|
6 |
|
7 |
+
# Facial expression recognizer initialization
|
8 |
+
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
|
9 |
+
model = model_from_json(open('facial_expression_model_structure.json', 'r').read())
|
10 |
+
model.load_weights('facial_expression_model_weights.h5')
|
11 |
+
|
12 |
+
emotions = ('angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral')
|
13 |
+
|
14 |
+
def blur_image(img):
|
15 |
+
blur = cv2.blur(img,(10, 10))
|
16 |
return blur
|
17 |
+
|
18 |
+
def process_image(img):
|
19 |
+
# Resize the frame
|
20 |
+
frame = cv2.resize(img, None, fx=scaling_factor, fy=scaling_factor, interpolation=cv2.INTER_AREA)
|
21 |
+
|
22 |
+
# Convert to grayscale
|
23 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
24 |
+
|
25 |
+
# Run the face detector on the grayscale image
|
26 |
+
face_rects = face_cascade.detectMultiScale(gray, 1.3, 5)
|
27 |
+
|
28 |
+
# Draw a rectangle around the face
|
29 |
+
for (x,y,w,h) in face_rects:
|
30 |
+
#cv2.rectangle(frame, (x,y), (x+w,y+h), (0,255,0), 3)
|
31 |
+
cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),2) #draw rectangle to main image
|
32 |
+
|
33 |
+
detected_face = frame[int(y):int(y+h), int(x):int(x+w)] #crop detected face
|
34 |
+
detected_face = cv2.cvtColor(detected_face, cv2.COLOR_BGR2GRAY) #transform to gray scale
|
35 |
+
detected_face = cv2.resize(detected_face, (48, 48)) #resize to 48x48
|
36 |
+
|
37 |
+
img_pixels = img_to_array(detected_face)
|
38 |
+
img_pixels = np.expand_dims(img_pixels, axis = 0)
|
39 |
+
|
40 |
+
img_pixels /= 255 #pixels are in scale of [0, 255]. normalize all pixels in scale of [0, 1]
|
41 |
+
|
42 |
+
predictions = model.predict(img_pixels) #store probabilities of 7 expressions
|
43 |
+
|
44 |
+
#find max indexed array 0: angry, 1:disgust, 2:fear, 3:happy, 4:sad, 5:surprise, 6:neutral
|
45 |
+
max_index = np.argmax(predictions[0])
|
46 |
+
emotion = emotions[max_index]
|
47 |
+
|
48 |
+
#write emotion text above rectangle
|
49 |
+
cv2.putText(frame, emotion, (int(x), int(y)), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 2)
|
50 |
+
|
51 |
+
return frame
|
52 |
+
|
53 |
|
54 |
interface = gr.Interface(
|
55 |
fn = process_image,
|