import gradio as gr import tensorflow as tf import keras from keras.datasets import mnist import matplotlib.pyplot as plt import random (train_images, train_labels), (test_images, test_labels) = mnist.load_data() def sample_digit(digit): rn = 0 # pick a random digit from 60,000 in the training set until a desired match is found while(train_labels[rn] != digit): rn = int(random.random() * 60000) digit_img = train_images[rn] fig = plt.figure() plt.imshow(digit_img, cmap=plt.cm.binary) out_txt = "train_images[%d]" % rn return fig, out_txt iface = gr.Interface( fn = sample_digit, inputs = [ #gr.inputs.Dropdown([0, 1, 2, 3]) #gr.inputs.Number() gr.inputs.Slider(minimum=0, maximum=9, step=1) ], outputs=[gr.outputs.Image(type='plot'), 'text'], title='MNIST Digit Sampler', description='Pick a random digit from the MNIST dataset' ) iface.launch()