File size: 14,598 Bytes
0b2a832
 
c99ced4
0b2a832
cf7ae80
0b2a832
c99ced4
4fb8a8d
2d21ea4
c55c5f3
2d21ea4
 
 
 
 
 
 
 
 
 
 
 
 
ba18c4b
5ad22bd
 
767e8cd
 
c99ced4
0b2a832
cf7ae80
c99ced4
4fb8a8d
 
 
 
06485c8
4fb8a8d
 
 
 
 
 
 
 
 
06485c8
4fb8a8d
 
 
 
 
 
 
 
 
06485c8
4fb8a8d
 
 
 
 
 
 
 
 
06485c8
4fb8a8d
 
 
 
 
 
 
 
 
06485c8
4fb8a8d
 
 
 
 
 
 
 
 
06485c8
4fb8a8d
 
 
 
 
f05b0f7
cf7ae80
 
 
06485c8
cf7ae80
 
 
c99ced4
4fb8a8d
 
 
 
 
06485c8
4fb8a8d
 
 
 
 
 
 
 
 
06485c8
4fb8a8d
 
 
 
 
 
 
 
 
06485c8
a1f2fd3
 
 
4fb8a8d
 
 
 
 
 
06485c8
a1f2fd3
 
 
4fb8a8d
 
 
 
 
 
06485c8
a1f2fd3
 
 
4fb8a8d
 
 
 
 
 
06485c8
a1f2fd3
 
 
4fb8a8d
 
 
 
 
 
06485c8
a1f2fd3
 
 
4fb8a8d
 
 
 
 
 
06485c8
a1f2fd3
 
 
4fb8a8d
 
 
 
 
 
06485c8
a1f2fd3
 
 
4fb8a8d
 
 
 
 
 
06485c8
a1f2fd3
 
 
4fb8a8d
 
 
 
 
 
06485c8
a1f2fd3
 
 
4fb8a8d
 
 
 
 
 
06485c8
a1f2fd3
 
 
 
 
 
 
 
 
06485c8
a1f2fd3
 
 
 
 
 
 
 
 
06485c8
a1f2fd3
 
 
 
 
 
 
 
 
06485c8
a1f2fd3
 
 
 
 
767e8cd
a1f2fd3
 
 
 
06485c8
a1f2fd3
 
 
 
 
 
 
 
 
06485c8
a1f2fd3
 
 
 
 
 
 
 
 
06485c8
a1f2fd3
 
 
 
 
 
 
 
 
06485c8
a1f2fd3
 
 
 
 
 
 
 
 
06485c8
a1f2fd3
 
 
 
 
 
bc9d50b
a1f2fd3
 
06485c8
a1f2fd3
 
 
4fb8a8d
c99ced4
4fb8a8d
bc9d50b
cf7ae80
 
06485c8
cf7ae80
 
 
c99ced4
a1f2fd3
 
bc9d50b
a1f2fd3
 
06485c8
a1f2fd3
 
 
 
c99ced4
0b2a832
79223b9
 
 
 
 
06485c8
79223b9
 
 
 
4fb8a8d
 
 
cf7ae80
0b2a832
 
 
 
 
c99ced4
0b2a832
c99ced4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import gradio as gr
import pandas as pd
from css_html_js import custom_css

TITLE = """<h1 align="center" id="space-title">🇹🇭 Thai Sentence Embedding Leaderboard</h1>"""

INTRODUCTION_TEXT = """
📐 The 🇹🇭 Thai Sentence Embedding Leaderboard aims to track, rank and evaluate open embedding models on Thai sentence embedding tasks. Source code for evaluation at https://github.com/mrpeerat/Thai-Sentence-Vector-Benchmark, feel free to submit your own score at https://huggingface.co/spaces/panuthept/thai_sentence_embedding_benchmark/discussions.
## Dataset
The evaluation is conducted on 4 tasks across 8 datasets:
1. Semantic Textual Similarity (STS)
- Translated STS-B, contains 1,379 test samples, https://github.com/mrpeerat/Thai-Sentence-Vector-Benchmark
2. Text Classification
- Wisesight, contains 2,671 test samples, https://huggingface.co/datasets/pythainlp/wisesight_sentiment
- Wongnai, contains 6,203 test samples, https://huggingface.co/datasets/Wongnai/wongnai_reviews
- Generated Review, contains 17,453 test samples, https://huggingface.co/datasets/airesearch/generated_reviews_enth
3. Pair Classification
- XNLI (Thai only), contains 3,340 test samples, https://github.com/facebookresearch/XNLI
4. Retrieval
- XQuAD (Thai only), contains 1,190 test samples, https://huggingface.co/datasets/google/xquad
- MIRACL (Thai only), contains 733 test samples, https://huggingface.co/datasets/miracl/miracl
- TyDiQA (Thai only), contains 763 test samples, https://huggingface.co/datasets/chompk/tydiqa-goldp-th
## Metrics
The evaluation metric for each task is as follows:
1. STS: Spearman’s Rank Correlation
2. Text Classification: F1 Score
3. Pair Classification: Average Precision
3. Retrieval: MMR@10
"""

results = [
    {
        'Model Name': '[XLMR-base](https://huggingface.co/FacebookAI/xlm-roberta-base)',
        'Model Size (Million Parameters)': 279,
        'Embedding Dimensions': 768,
        'Average (8 datasets)': 37.95,
        'STS (1 datasets)': 44.48,
        'Classification (3 datasets)': 58.42,
        'PairClassification (1 datasets)': 57.62,
        'Retrieval (3 datasets)': 5.57,
    },
    {
        'Model Name': '[XLMR-large](https://huggingface.co/FacebookAI/xlm-roberta-large)',
        'Model Size (Million Parameters)': 561,
        'Embedding Dimensions': 1024,
        'Average (8 datasets)': 38.59,
        'STS (1 datasets)': 38.31,
        'Classification (3 datasets)': 59.51,
        'PairClassification (1 datasets)': 54.56,
        'Retrieval (3 datasets)': 11.80,
    },
    {
        'Model Name': '[WangchanBERTa](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased)',
        'Model Size (Million Parameters)': 106,
        'Embedding Dimensions': 768,
        'Average (8 datasets)': 36.34,
        'STS (1 datasets)': 21.32,
        'Classification (3 datasets)': 55.46,
        'PairClassification (1 datasets)': 52.96,
        'Retrieval (3 datasets)': 19.49,
    },
    {
        'Model Name': '[PhayaThaiBERT](https://huggingface.co/clicknext/phayathaibert)',
        'Model Size (Million Parameters)': 278,
        'Embedding Dimensions': 768,
        'Average (8 datasets)': 55.38,
        'STS (1 datasets)': 51.56,
        'Classification (3 datasets)': 59.90,
        'PairClassification (1 datasets)': 59.67,
        'Retrieval (3 datasets)': 56.31,
    },
    {
        'Model Name': '[MPNet-multilingual](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2)',
        'Model Size (Million Parameters)': 278,
        'Embedding Dimensions': 768,
        'Average (8 datasets)': 66.14,
        'STS (1 datasets)': 80.49,
        'Classification (3 datasets)': 56.89,
        'PairClassification (1 datasets)': 84.14,
        'Retrieval (3 datasets)': 64.13,
    },
    {
        'Model Name': '[DistilUSE-multilingual](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2)',
        'Model Size (Million Parameters)': 135,
        'Embedding Dimensions': 512,
        'Average (8 datasets)': 51.45,
        'STS (1 datasets)': 65.37,
        'Classification (3 datasets)': 50.93,
        'PairClassification (1 datasets)': 65.94,
        'Retrieval (3 datasets)': 42.72,
    },
    {
        'Model Name': '[BGE-M3 (dense only)](https://huggingface.co/BAAI/bge-m3)',
        'Model Size (Million Parameters)': 570,
        'Embedding Dimensions': 1024,
        'Average (8 datasets)': 75.64,
        'STS (1 datasets)': 77.22,
        'Classification (3 datasets)': 59.95,
        'PairClassification (1 datasets)': 79.02,
        'Retrieval (3 datasets)': 91.42,
    },
    {
        'Model Name': '[SimCSE-XLMR-base](https://huggingface.co/kornwtp/simcse-model-XLMR)',
        'Model Size (Million Parameters)': 279,
        'Embedding Dimensions': 768,
        'Average (8 datasets)': 53.83,
        'STS (1 datasets)': 63.98,
        'Classification (3 datasets)': 49.44,
        'PairClassification (1 datasets)': 61.87,
        'Retrieval (3 datasets)': 54.17,
    },
    {
        'Model Name': '[SimCSE-WangchanBERTa](https://huggingface.co/kornwtp/simcse-model-wangchanberta)',
        'Model Size (Million Parameters)': 106,
        'Embedding Dimensions': 768,
        'Average (8 datasets)': 54.01,
        'STS (1 datasets)': 60.73,
        'Classification (3 datasets)': 56.71,
        'PairClassification (1 datasets)': 59.14,
        'Retrieval (3 datasets)': 51.05,
    },
    {
        'Model Name': '[SimCSE-PhayaThaiBERT](https://huggingface.co/kornwtp/simcse-model-phayathaibert)',
        'Model Size (Million Parameters)': 278,
        'Embedding Dimensions': 768,
        'Average (8 datasets)': 60.02,
        'STS (1 datasets)': 67.82,   
        'Classification (3 datasets)': 53.50,
        'PairClassification (1 datasets)': 63.35,
        'Retrieval (3 datasets)': 66.05,
    },
    {
        'Model Name': '[SCT-XLMR-base](https://huggingface.co/kornwtp/SCT-model-XLMR)',
        'Model Size (Million Parameters)': 279,
        'Embedding Dimensions': 768,
        'Average (8 datasets)': 57.69,
        'STS (1 datasets)': 68.91,  
        'Classification (3 datasets)': 55.93,
        'PairClassification (1 datasets)': 66.49,
        'Retrieval (3 datasets)': 54.90,
    },
    {
        'Model Name': '[SCT-WangchanBERTa](https://huggingface.co/kornwtp/SCT-model-wangchanberta)',
        'Model Size (Million Parameters)': 106,
        'Embedding Dimensions': 768,
        'Average (8 datasets)': 62.22,
        'STS (1 datasets)': 71.35,   
        'Classification (3 datasets)': 59.19,
        'PairClassification (1 datasets)': 67.04,
        'Retrieval (3 datasets)': 63.83,
    },
    {
        'Model Name': '[SCT-PhayaThaiBERT](https://huggingface.co/kornwtp/SCT-model-phayathaibert)',
        'Model Size (Million Parameters)': 278,
        'Embedding Dimensions': 768,
        'Average (8 datasets)': 63.28,
        'STS (1 datasets)': 74.08,   
        'Classification (3 datasets)': 58.77,
        'PairClassification (1 datasets)': 65.87,
        'Retrieval (3 datasets)': 66.20,
    },
    {
        'Model Name': '[SCT-KD-XLMR-base](https://huggingface.co/kornwtp/SCT-KD-model-XLMR)',
        'Model Size (Million Parameters)': 279,
        'Embedding Dimensions': 768,
        'Average (8 datasets)': 65.37,
        'STS (1 datasets)': 78.78,  
        'Classification (3 datasets)': 56.87,
        'PairClassification (1 datasets)': 79.78,
        'Retrieval (3 datasets)': 65.02,
    },
    {
        'Model Name': '[SCT-KD-WangchanBERTa](https://huggingface.co/kornwtp/SCT-KD-model-wangchanberta)',
        'Model Size (Million Parameters)': 106,
        'Embedding Dimensions': 768,
        'Average (8 datasets)': 63.55,
        'STS (1 datasets)': 77.77,
        'Classification (3 datasets)': 56.33,
        'PairClassification (1 datasets)': 77.04,
        'Retrieval (3 datasets)': 62.38,
    },
    {
        'Model Name': '[SCT-KD-PhayaThaiBERT](https://huggingface.co/kornwtp/SCT-KD-model-phayathaibert)',
        'Model Size (Million Parameters)': 278,
        'Embedding Dimensions': 768,
        'Average (8 datasets)': 66.00,
        'STS (1 datasets)': 77.80,   
        'Classification (3 datasets)': 57.27,
        'PairClassification (1 datasets)': 77.84,
        'Retrieval (3 datasets)': 67.94,
    },
    {
        'Model Name': '[ConGen-XLMR-base](https://huggingface.co/kornwtp/ConGen-model-XLMR)',
        'Model Size (Million Parameters)': 279,
        'Embedding Dimensions': 768,
        'Average (8 datasets)': 66.84,
        'STS (1 datasets)': 79.69,   
        'Classification (3 datasets)': 56.90,
        'PairClassification (1 datasets)': 81.47,
        'Retrieval (3 datasets)': 68.03,
    },
    {
        'Model Name': '[ConGen-WangchanBERTa](https://huggingface.co/kornwtp/ConGen-model-wangchanberta)',
        'Model Size (Million Parameters)': 106,
        'Embedding Dimensions': 768,
        'Average (8 datasets)': 67.17,
        'STS (1 datasets)': 78.78,  
        'Classification (3 datasets)': 58.16,
        'PairClassification (1 datasets)': 82.43,
        'Retrieval (3 datasets)': 67.66,
    },
    {
        'Model Name': '[ConGen-PhayaThaiBERT](https://huggingface.co/kornwtp/ConGen-model-phayathaibert)',
        'Model Size (Million Parameters)': 278,
        'Embedding Dimensions': 768,
        'Average (8 datasets)': 66.94,
        'STS (1 datasets)': 78.90,   
        'Classification (3 datasets)': 57.63,
        'PairClassification (1 datasets)': 81.01,
        'Retrieval (3 datasets)': 68.04,
    },
    {
        'Model Name': '[E5-Mistral-7B-Instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct)',
        'Model Size (Million Parameters)': 7110,
        'Embedding Dimensions': 4096,
        'Average (8 datasets)': 71.94,
        'STS (1 datasets)': 75.52,
        'Classification (3 datasets)': 60.46,
        'PairClassification (1 datasets)': 68.04,
        'Retrieval (3 datasets)': 86.80,
    },
    {
        'Model Name': '[gte-Qwen2-7B-Instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct)',
        'Model Size (Million Parameters)': 7610,
        'Embedding Dimensions': 3584,
        'Average (8 datasets)': 49.31,
        'STS (1 datasets)': 51.60,
        'Classification (3 datasets)': 57.55,
        'PairClassification (1 datasets)': 61.73,
        'Retrieval (3 datasets)': 38.31,
    },
    {
        'Model Name': '[GritLM-7B](https://huggingface.co/GritLM/GritLM-7B)',
        'Model Size (Million Parameters)': 7240,
        'Embedding Dimensions': 4096,
        'Average (8 datasets)': 42.38,
        'STS (1 datasets)': 45.50,
        'Classification (3 datasets)': 56.83,
        'PairClassification (1 datasets)': 56.40,
        'Retrieval (3 datasets)': 22.79,
    },
    {

        'Model Name': '[Llama3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B)',
        'Model Size (Million Parameters)': 8030,
        'Embedding Dimensions': 4096,
        'Average (8 datasets)': 51.63,
        'STS (1 datasets)': 49.48,
        'Classification (3 datasets)': 58.54,
        'PairClassification (1 datasets)': 57.76,
        'Retrieval (3 datasets)': 47.93,
    },
    {
        'Model Name': '[Llama3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)',
        'Model Size (Million Parameters)': 8030,
        'Embedding Dimensions': 4096,
        'Average (8 datasets)': 52.81,
        'STS (1 datasets)': 50.63,
        'Classification (3 datasets)': 58.85,
        'PairClassification (1 datasets)': 58.04,
        'Retrieval (3 datasets)': 50.38,
    },
    {
        'Model Name': '[Llama3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B)',
        'Model Size (Million Parameters)': 8030,
        'Embedding Dimensions': 4096,
        'Average (8 datasets)': 50.36,
        'STS (1 datasets)': 49.98,
        'Classification (3 datasets)': 58.18,
        'PairClassification (1 datasets)': 58.12,
        'Retrieval (3 datasets)': 43.64,
    },
    {
        'Model Name': '[Llama3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)',
        'Model Size (Million Parameters)': 8030,
        'Embedding Dimensions': 4096,
        'Average (8 datasets)': 50.06,
        'STS (1 datasets)': 49.76,
        'Classification (3 datasets)': 57.90,
        'PairClassification (1 datasets)': 57.47,
        'Retrieval (3 datasets)': 43.63,
    },
    {
        'Model Name': '[Typhoon-8B-Instruct](https://huggingface.co/scb10x/llama-3-typhoon-v1.5-8b-instruct)',
        'Model Size (Million Parameters)': 8030,
        'Embedding Dimensions': 4096,
        'Average (8 datasets)': 53.51,
        'STS (1 datasets)': 51.46,
        'Classification (3 datasets)': 58.91,
        'PairClassification (1 datasets)': 58.05,
        'Retrieval (3 datasets)': 52.65,
    },
    {
        'Model Name': 'Cohere-embed-multilingual-v2.0',
        'Model Size (Million Parameters)': "N/A",
        'Embedding Dimensions': 768,
        'Average (8 datasets)': 68.01,
        'STS (1 datasets)': 68.03,
        'Classification (3 datasets)': 57.31,
        'PairClassification (1 datasets)': 62.03,
        'Retrieval (3 datasets)': 85.23,
    },
    {
        'Model Name': 'Cohere-embed-multilingual-v3.0',
        'Model Size (Million Parameters)': "N/A",
        'Embedding Dimensions': 1024,
        'Average (8 datasets)': 74.86,
        'STS (1 datasets)': 77.87,
        'Classification (3 datasets)': 59.96,
        'PairClassification (1 datasets)': 73.28,
        'Retrieval (3 datasets)': 91.43,
    },
    {
        'Model Name': 'Openai-text-embedding-3-large',
        'Model Size (Million Parameters)': "N/A",
        'Embedding Dimensions': 3072,
        'Average (8 datasets)': 69.26,
        'STS (1 datasets)': 70.46,
        'Classification (3 datasets)': 58.79,
        'PairClassification (1 datasets)': 67.33,
        'Retrieval (3 datasets)': 83.87,
    },
]

# Calculate average
results = [
    {
        **result,
        'Average (8 datasets)': round(sum(
            result.get(key, 0) for key in ['STS (1 datasets)', 'Classification (3 datasets)', 'PairClassification (1 datasets)', 'Retrieval (3 datasets)']
        ) / 4, 2),
    }
    for result in results
]
# Sort by average
results = sorted(results, key=lambda x: x['Average (8 datasets)'], reverse=True)

data = pd.DataFrame(results)

demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
    gr.DataFrame(data, datatype = 'markdown')

demo.launch()